When it comes to using machine learning, which category does your company fall into?
IMAGE: TypographyImages?—?Pixabay (CC0)

When it comes to using machine learning, which category does your company fall into?

An entry in the MIT Tech Review, “The rare form of machine learning that can spot hackers who have already broken in”, looks at the development of machine learning algorithms for cybersecurity purposes, although not along traditional lines by trying to detect patterns based on previous or known attacks, but instead focusing on identifying attackers who have already managed to enter the system and then preventing them from stealing information.

The approach uses unsupervised learning algorithms that compete with each other to detect possible anomalous behavior. As said, instead of focusing on what has been learned from previous security issues, unsupervised learning looks for anomalies without the need for a human to tell it what to look for, allowing it to examine countless examples of behavior within the corporate network and to then detect those with anomalous patterns. Thus, the repeated movement of employees through the corporate network, information searches or access to company resources could be identified as standard or risk-free behavior, while the patterns of an intruder trying to collect information in a particular way could be recognized as an attempted attack and then be quarantined.

Managing a range of risks and detecting anomalies are just a few of the areas where machine learning is showing promise, and I’m using it here simply as an example. In the case of supervised learning, the combination of different types of learning makes it possible to establish suspicious patterns; alternately, it’s possible to allow unsupervised algorithms to detect out-of-the-ordinary patterns. The range of possibilities is enormously varied and the investments and advances made today will undoubtedly become the competitive advantages of tomorrow.

As companies begin to see machine learning as a possibility within their reach, one that doesn’t necessarily require hiring expensive data scientists and that can be done with relatively simple and even visual tools, ideas like this can be seen as showcases that should attract the interest of those who have not yet tried this type of technology. Two other articles in MIT Tech Review should also raise awareness: they use two very simple and (at least for geeks) amusing flow diagrams. The first helps us to understand whether a project is based on artificial intelligence and the second on the conceptual differences between different types of machine learning algorithms.

What’s your company’s position with respect to machine learning? It’s important to remember that preparing data properly is the secret of successful analysis. If defining objectives takes up around 10% of the effort devoted to most machine learning projects, this second phase of data preparation can amount to up to 80%. Next comes the phase of creating models and obtaining predictions, which is more accessible and simple: the tools for this are becoming increasingly visual, simple and easy to manage. The phase previously associated with data scientists, who tend to be hard to find and the retain, now takes up barely 5% of a project. The final phase, that of evaluating the results obtained, tends to consume the remaining 5%.

Most companies fall into one of three categories: those that have made some tentative steps by looking at the tools involved and have maybe tried out a dataset and have read or evaluated something about machine learning. Then there are the early adopters, using models that have been in production for around two years; while the third group have models in production dating back five years or more, with all that this entails in terms of experience and capitalizing on their results. Which category does your company fall into?


(En espa?ol, aquí)

?

要查看或添加评论,请登录

Enrique Dans的更多文章

  • El desastre del software y la automoción

    El desastre del software y la automoción

    GM se ve obligada a detener temporalmente las ventas de su Chevy Blazer EV después de detectar un sinnúmero de…

    11 条评论
  • El enésimo drama de la automoción tradicional: la interfaz

    El enésimo drama de la automoción tradicional: la interfaz

    Porsche acaba de anunciar que se une a toda la legión de empresas de automoción tradicionales y renuncia a tener una…

  • Poniendo a prueba a ChatGPT: consultores centauros o cyborgs

    Poniendo a prueba a ChatGPT: consultores centauros o cyborgs

    Un working paper de Harvard, ?Navigating the jagged technological frontier: field experimental evidence of the effects…

    12 条评论
  • Suscripciones, tramos… y spam

    Suscripciones, tramos… y spam

    Elon Musk confirma sus intenciones de convertir la antigua Twitter, ahora X, en un complejo entramado de suscripciones…

  • El código abierto y sus límites

    El código abierto y sus límites

    Sin duda, el código abierto es la forma más ventajosa de crear software: cuando un proyecto de software toma la forma…

  • La gran expansión china

    La gran expansión china

    El ranking de apps más descargadas en el mundo en iOS y Android para el mes de septiembre de 2023 elaborado por…

    1 条评论
  • Starlink y las torres de telefonía en el espacio

    Starlink y las torres de telefonía en el espacio

    Starlink remodela su página web y a?ade una oferta de internet, voz y datos para smartphones provistos de conectividad…

    3 条评论
  • La fotografía con trampa

    La fotografía con trampa

    La presentación de los nuevos smartphones de Google, Pixel 8 y Pixel 8 Pro, y fundamentalmente de las funcionalidades…

  • Las consecuencias de reprimir los procesos de innovación

    Las consecuencias de reprimir los procesos de innovación

    Mi columna de esta semana en Invertia se titula ?El mercado de trabajo y la innovación? (pdf), y previene sobre los…

  • We are on the verge of the most dangerous election in history

    We are on the verge of the most dangerous election in history

    In just a few days, on November 3rd, the US presidential elections will take place, the most dangerous in history, and…

    2 条评论

社区洞察

其他会员也浏览了