What is the difference between quantitative and qualitative data?
Nouran Mashaal
Data Analyst Specialist at DXC Technology with expertise in Data Engineering
How you analyze your data depends on the type of data you’re dealing with—quantitative or qualitative. So what’s the difference?
Quantitative data is anything measurable, comprising specific quantities and numbers. Some examples of quantitative data include sales figures, email click-through rates, number of website visitors, and percentage revenue increase. Quantitative data analysis techniques focus on the statistical, mathematical, or numerical analysis of (usually large) datasets. This includes the manipulation of statistical data using computational techniques and algorithms. Quantitative analysis techniques are often used to explain certain phenomena or to make predictions.
Qualitative data cannot be measured objectively, and is therefore open to more subjective interpretation. Some examples of qualitative data include comments left in response to a survey question, things people have said during interviews, tweets and other social media posts, and the text included in product reviews. With qualitative data analysis, the focus is on making sense of unstructured data (such as written text, or transcripts of spoken conversations). Often, qualitative analysis will organize the data into themes—a process which, fortunately, can be automated.
Data analysts work with both quantitative and qualitative data, so it’s important to be familiar with a variety of analysis methods. Let’s take a look at some of the most useful techniques now.