What is CNC machining?

What is CNC machining?

CNC (Computer Numerical Control) machining is a subtractive manufacturing technology: parts are created by removing material from a solid block (called the blank or the workpiece) using a variety of cutting tools.

This is a fundamentally different way of manufacturing compared to additive (3D printing) or formative (Injection Molding) technologies. The material removal mechanisms have significant implications on the benefits, limitations and design restrictions of CNC. More on this below.

No alt text provided for this image

CNC machining is a digital manufacturing technology: it produces high-accuracy parts with excellent physical properties directly from a CAD file. Due to the high level of automation, CNC is price-competitive for both one-off custom parts and medium-volume productions.

Almost every material can be CNC machined. The most common examples include?metals?(aluminum and steel alloys, brass etc) and?plastics?(ABS, Delrin, Nylon etc). Foam, composites and wood can also be machined.

The basic CNC process can be broken down into 3 steps. The engineer first designs the CAD model of the part. The machinist then turns the CAD file into a CNC program (G-code) and sets up the machine. Finally, the CNC system executes all machining operations with little supervision, removing material and creating the part.

Types of CNC machines

In this guide, we will focus on CNC machines that remove material using cutting tools. These are the most common and have the widest range of applications. Other CNC machines include laser cutters, plasma cutters and EDM machines.

No alt text provided for this image

3-axis CNC machines

CNC milling and CNC turning machines are examples of 3-axis CNC systems. These “basic” machines allow the movement of the cutting tool in three linear axes relative to the workpiece (left-right, back-forth and up-down).

CNC milling

  • The workpiece is held stationary directly on the machine bed or in a vice.
  • Material is removed from the workpiece using cutting tools or drills that rotate at high speed.
  • The tools are attached to a spindle, which can move along three linear axis.

3-axis CNC milling machines are very common, as they can be used to produce most common geometries. They are relatively easy to program and operate, so start-up machining costs are relatively low.

Tool access can be a?design restriction?in CNC milling. As there are only three axes to work with, certain areas might be impossible to reach. This is not a big issue if the workpiece needs to be rotated just once, but if multiple rotations are needed the labor and machining costs increase fast.

No alt text provided for this image

CNC turning (lathes)

  • The workpiece is held on the spindle while rotating at high speed.
  • A cutting tool or center drill traces the outer or inner perimeter of the part, forming the geometry.
  • The tool does not rotate and moves along polar directions (radially and lengthwise).

CNC lathes are extensively used, because they can produce parts at a much higher rate and at a lower cost per unit than CNC mills. This is especially relevant for larger volumes.

The main design restriction of CNC lathes is that they can only produce parts with a cylindrical profile (think screws or washers). To overcome this limitation, features of the part are often CNC milled in a separate machining step. Alternatively, 5-axis mill-turning CNC centers can be used to produce the same geometry in one step.

No alt text provided for this image

5-axis CNC machining

Multi-axis CNC machining centers come in three variations: 5-axis indexed CNC milling, continuous 5-axis CNC milling and mill-turning centers with live tooling.

These systems are essentially milling machines or lathes enhanced with additional degrees of freedom. For example, 5-axis CNC milling centers allow the rotation of the machine bed or the toolhead (or both) in addition to the three linear axes of movement.

The advanced capabilities of these machines come at an increased cost. They require both specialized machinery and also operators with expert knowledge. For highly complex or topology optimized metal parts, 3D printing is usually a more suitable option though.

Indexed 5-axis CNC milling

  • During machining the cutting tool can only move along three linear axis.
  • Between operations the bed and the toolhead can rotate, giving access to the workpiece from a different angle.

Indexed 5-axis CNC milling systems are also known as 3+2 CNC milling machines, since they are using the two additional degrees of freedom only between machining operations to rotate the workpiece.

The key benefit of these systems is that they eliminate the need of manually repositioning the workpiece. This way parts with more complex geometries can be manufactured faster and at higher accuracy than in a 3-axis CNC mill. They lack though the true freeform capabilities of continuous 5-axis CNC machines.

No alt text provided for this image

Continuous 5-axis CNC milling

  • The cutting tool can move along three linear and two rotational axes relative to the workpiece.
  • All five axes can move at the same during all machining operations.

Continuous 5-axis CNC milling systems have a similar machine architecture to indexed 5-axis CNC milling machines. They allow, however, for the movement of all five axes at the same time during all machining operations.

This way, it is possible to produce parts with complex, ‘organic’ geometries that cannot be manufactured at the achieved level of accuracy with any other technology. These advanced capabilities come of course at a high cost, as both expensive machinery and highly-trained machinists are needed.

No alt text provided for this image

Mill-turning CNC centers

  • The workpiece is attached to a spindle that can either rotate at high speed (like a lathe) or position it at a precise angle (like a 5-axis CNC mill).
  • Lathe and milling cutting tools are used to remove material from the workpiece, forming the part.

Mill-turning CNC centers are essentially CNC lathe machines equipped with CNC milling tools. A variation of the mill-turning centers are swiss-style lathes, which have typically higher precession.

Mill-turning systems take advantage of both the high productivity of CNC turning and the geometric flexibility of CNC milling. They are ideal for manufacturing parts with 'loose' rotational symmetry (think camshafts and centrifugal impellers) at a much lower cost than other 5-axis CNC machining systems.

No alt text provided for this image

To summarize

  • 3-axis CNC milling machines manufacture parts with relatively simple geometries with excellent accuracy and at a low cost.
  • CNC lathes have the lowest cost per unit, but are only suitable for part geometries with rotational symmetry.
  • Indexed 5-axis CNC milling machines manufacture parts with features that do not align with one of the main axes quickly and with very high accuracy.
  • Continuous 5-axis CNC milling machines manufacture parts with highly complex, 'organic' geometries and smooth contours, but at a high cost.
  • Mill-turning CNC centers combine the benefits of CNC turning and CNC milling into a single system to manufacture complex parts at a lower cost than other 5-axis CNC systems.


要查看或添加评论,请登录

Bob Yi Mechanical Enclosure - 3D Print - CNC - Mould的更多文章

  • What is injection molding?

    What is injection molding?

    Injection molding is a manufacturing technology for the mass-production of identical plastic parts with good…

  • What is a Heat Sink?

    What is a Heat Sink?

    A heatsink is an electronic component that prevents components on a circuit board from frying because of increased heat…

    1 条评论
  • What is anodizing?

    What is anodizing?

    Anodizing is a key step in manufacturing aluminum CNC machined parts . An electrochemical process that involves coating…

  • What is rapid prototyping?

    What is rapid prototyping?

    Rapid prototyping uses 3D computer-aided design (CAD) and manufacturing processes to quickly develop 3D parts or…

  • What is SLA 3D printing?

    What is SLA 3D printing?

    In this introduction to Stereolithography (SLA) we cover the basic principles of the process that are key to determine…

  • What is SLS 3D printing?

    What is SLS 3D printing?

    Selective Laser Sintering (SLS) is an additive manufacturing process that belongs to the Powder Bed Fusion family. In…

  • Investment casting

    Investment casting

    The investment casting process traditionally uses wax patterns to produce molds for casting, as it has a very clean…

  • 3D printing vs. CNC machining

    3D printing vs. CNC machining

    Learn about the practical differences of CNC machining and 3D Printing Introduction CNC machining is a common…

  • Several Common Metal 3D Printing Technologies

    Several Common Metal 3D Printing Technologies

    Metal 3D printing is considered the vertex of all 3D printing. The earliest metal 3D printing patent is DMLS (direct…

    1 条评论

社区洞察

其他会员也浏览了