We Need a Plan for the Transition to Renewable Energy
Photo by American Public Power Association on Unsplash

We Need a Plan for the Transition to Renewable Energy

Radical societal transformation is inevitable; a plan could make a difference between catastrophe and progress.

Introduction

The transition to renewable energy is inevitable given the current climate crisis and the fact that fossil fuels are a finite resource. To make the shift, a detailed plan is required to indicate the first steps and anticipate challenges in allocating resources and the policies needed to achieve the outcome. Germany has arguably accomplished more toward the transition to renewable energy than any other nation, largely because it has such a plan—the “Energiewende ,” which seeks a 60 percent reduction in all fossil fuel use by 2050 and a 50 percent reduction in primary energy use through efficiency in power generation, especially for buildings and the transport sector.

What follows are some components of a basic plan that can be adapted according to each country or state and adjusted for contingencies.

Level One: The ‘Easy’ Stuff

The easiest way to kick-start the transition is to switch to solar and wind power for electricity generation by building lots of panels and turbines, respectively, while phasing out coal. Distributing generation and storage of these energy sources (rooftop solar panels with home- or office-scale battery packs) will help. Replacing natural gas will be harder because gas-fired “peaking” plants are often used to buffer the intermittency of industrial-scale wind and solar inputs to the grid.

Electricity accounted for?less than a quarter ?of all final energy used in the United States in 2022. Since solar, wind, hydro, and geothermal produce electricity, it makes sense to electrify even more of our energy usage—heating and cooling buildings with electric air-source heat pumps and cooking with electric induction stoves, for example.

Transportation represents a large swath of energy consumption, mostly due to the growing number of personal cars. As of 2021, there were?250 million gasoline-fueled automobiles . While we are busy replacing these with electric vehicles, we can easily and cheaply promote walking, bicycling, and public transit.

Substantial retrofitting is needed for energy efficiency. Building codes should be strengthened to mandate net-zero or near-net-zero energy performance for new construction. Zoning codes and development policies should encourage infill development, multifamily buildings, and clustered mixed-use development. Using more energy-efficient appliances will also help.

The food system is a significant energy consumer. Increasing the market share of organic local foods can dramatically lower the amount of fossil fuels used to manufacture fertilizers as well as in food processing, and in transportation. We can also sequester enormous amounts of atmospheric carbon in topsoil by promoting farming and land management practices that build soil rather than deplete it.

By our calculations, these actions could reduce carbon emissions by 40 percent in 10 to 20 years.

Level Two: The Harder Stuff

Solar and wind technologies provide energy intermittently. When they become dominant, we must adapt to this with substantial amounts of grid-level energy storage and a major grid overhaul to get the electricity sector to 80 percent renewables. We’ll also need to time our energy usage to coincide with sunlight and wind energy availability.

The transport sector will require extensive and costly restructuring. Densified cities and suburbs can be reoriented to public transit, bicycling, and walking. All motorized human transport can be electric, with more public transit and intercity passenger rail links. Heavy trucks could run on fuel cells, but it would be better to minimize trucking by expanding freight rail. Sails would increase the fuel efficiency of shipping, but relocalization or deglobalization of manufacturing would be a necessary co-strategy to reduce the need for shipping.

Although much of the manufacturing sector runs on electricity, many raw materials used during the manufacturing processes either?are?fossil fuels or require fossil fuels for mining or transformation. By replacing fossil fuel-based materials and by increasing the recycling of nonrenewable materials, we can reduce dependency on mining.

If we do all this and build far more solar panels and wind turbines, we could, by our calculations, achieve roughly an 80 percent reduction in emissions.

Level Three: The Really Hard Stuff

Eliminating the last 20 percent of our current fossil fuel consumption will take even more time, research, investment, and behavioral adaptation. One example is that we currently use enormous amounts of cement in construction with concrete. Cement-making needs high heat, which could theoretically be supplied by sunlight, electricity, or hydrogen—but only with a complete redesign of the process.

This is the time to make all food production organic and to ensure that agriculture builds topsoil. Eliminating all fossil fuels will entail redesigning food systems to minimize processing, packaging, and transport.

The communications sector—which uses mining and high-heat processes to produce phones, computers, servers, wires, photo-optic cables, cell towers, and more—presents a challenge. The only good long-term solution here is to make devices that last and then repair, fully recycle, and remanufacture them only when absolutely needed. The internet could be maintained via low-tech, asynchronous networks now being?pioneered in poor nations , using relatively little power.

In the transport sector, scrapping petroleum will require costly substitutes (fuel cells or biofuels). Global trade will inevitably shrink. With no ready substitute for aviation fuels, we may have to relegate aviation to a specialty transport mode. Planes running on hydrogen or biofuels are an expensive possibility, as are dirigibles filled with (nonrenewable) helium.

On land, paving and repairing roads without oil-based asphalt is possible, though it will require a complete redesign of processes and equipment.

If we can do all this, we can get beyond zero carbon emissions; with carbon sequestration in soils and forests, we could reduce atmospheric carbon each year.

Scale Is the Biggest Challenge

It is possible to design a renewable energy system that 1) has minimal environmental impacts, 2) is reliable, and 3) is affordable—as long as relatively modest amounts of energy are needed. Once current U.S. scales of energy production and usage are assumed, something has to give.

We sacrifice the environment (due to the vast tracts of land needed for siting wind turbines and solar panels) for the purposes of reliability (because solar and wind are intermittent) and affordability (because of the need for storage or capacity redundancy).

Power is another hurdle: massive ships and airplanes require energy-dense fuels. Renewable energy resources can supply the needed power, but scale is crucial. While building and operating a few hydrogen-powered airplanes for specialized purposes would be technically feasible, operating fleets of thousands of commercial planes with hydrogen fuel is daunting from both a technical and economic perspective.

It’s Not All About Solar and Wind

Solar and wind are the favored energy sources of the future; equipment prices are falling, the rate of installation continues to be high, and there is considerable potential for further growth. However, their inherent intermittency will pose increasing challenges as they become more dominant. Other renewable energy sources—hydropower, geothermal, and biomass—can more readily supply controllable baseload power, but these sources have much less opportunity for growth owing to limits on siting, geology, and supply.

Hopes for high levels of wind and solar energy supply are driven mainly by the assumption that industrial societies can and should maintain very high levels of energy use. The challenge is always scale: If energy usage in the United States could be scaled back significantly (70 to 90 percent), then a reliable all-renewable energy regime would become much easier to envision and cheaper to engineer.

We Must Adapt to Less Energy

Considering the speed and scale of emission reductions required to avert climate catastrophe, people in industrialized countries will have less energy than they are used to consuming.

Despite our understandable wish to maintain current levels of comfort and convenience, it’s worth keeping an ecological footprint analysis in mind.

According to calculations by the Global Footprint Network, the productive land and water available to each person on Earth to live sustainably in 2019 was?1.6 global hectares . Meanwhile, the per capita ecological footprint of the United States was 8.1 global hectares per capita in 2018 (if the entire world population lived at this footprint, it would?require ?five planet Earths).

Clearly, we should aim for a sustainable energy and material consumption level, which, on average, is significantly lower than at present. If we don’t achieve this, we will eventually be caught short, with significant economic and political fallout.

What should we do to prepare for energy reduction? Look to California as a model: Since the 1970s, its economy has grown?while its per capita electricity demand has not . The state has encouraged cooperation between research institutions, manufacturers, utilities, and regulators to determine how to keep demand from growing by changing how electricity is used.


Continue reading this article for free on Resilience.org ...


Kat Friedrich

Editor in Chief at Solar Today | Previous Contributor at Popular Mechanics | Contributor at Supercluster | Graduate of UW-Madison College of Engineering

7 个月
回复
Tycho Huussen

Systems thinking | project management & consultancy | geological netzero | marine cloud brightening | physics & marine science

7 个月

A global cap on CO2 emmissions is the stuff of fairy tales. Ain’t gonna happen. It’s doable for developed countries but completely unreasonable for developing countries. I believe much more in a Carbon Takeback Obligation. You might say another fairy tale, but I think for example the EU/OECD could implement such a policy (which obviously would apply to energy imports as well). CTBO would make the gas and oil industry responsible for the cleanup up CO2 pollution. I know it does not cover global emissions but it would cover a lot and set a precedent for the rest of the world to follow. Additionally it would boost the development of CCS which could be used to tackle emmisiions ourside of EU/OECD and historic emissions. What are your thoughts on this?

回复
Rob Bradley

CEO and Founder, Institute for Energy Research

7 个月

Solar is anti-ecological, for starters ...

要查看或添加评论,请登录

社区洞察

其他会员也浏览了