Voyager 1 detects plasma 'hum'? in the emptiness of space

Voyager 1 detects plasma 'hum' in the emptiness of space

Voyager 1, one of two sibling NASA spacecraft launched 44 years ago and now the most distant human-made object in space still works and zooms toward infinity.

The craft has long since zipped past the edge of the solar system through the heliopause—the solar system's border with interstellar space—into the interstellar medium. Now, its instruments have detected the constant drone of interstellar gas (plasma waves), according to Cornell University-led research.

No alt text provided for this image

A Cornell doctoral student, Stella Koch Ocker in astronomy has uncovered the emission by examining the data sent from billions of miles away. He states that the emission is very faint and monotone because it is in the narrow frequency bandwidth.

This work allows scientists to understand how the interstellar medium interacts with the solar wind, Ocker said, and how the protective bubble of the solar system's heliosphere is shaped and modified by the interstellar environment.

Launched in September 1977, the Voyager 1 spacecraft flew by Jupiter in 1979 and then Saturn in late 1980. Traveling at about 38,000 mph, Voyager 1 crossed the heliopause in August 2012.

After entering interstellar space, the spacecraft's Plasma Wave System detected perturbations in the gas. But, in between those eruptions—caused by our own roiling sun—researchers have uncovered a steady, persistent signature produced by the tenuous near-vacuum of space. The interstellar medium is like a quiet or gentle rain, in the case of a solar outburst, it's like detecting a lightning burst in a thunderstorm, and then it's back to gentle rain.

Ocker believes there is more low-level activity in the interstellar gas than scientists had previously thought, which allows researchers to track the spatial distribution of plasma, that is when it's not being perturbed by solar flares.

Voyager 1 left Earth carrying a Golden Record created by a committee chaired by the late Cornell professor Carl Sagan, as well as mid-1970s technology. To send a signal to Earth, it took 22 watts, according to NASA's Jet Propulsion Laboratory. The craft has almost 70 kilobytes of computer memory and—at the beginning of the mission—a data rate of 21 kilobits per second.

Due to the 14-billion-mile distance, the communication rate has since slowed to 160-bits-per-second or about half a 300-baud rate.


要查看或添加评论,请登录

社区洞察

其他会员也浏览了