Truth Cannot Contradict Truth - Part 1
ESSAY 1: The Catholic Church: Midwife and Nursemaid to Science - Part 1 of 2
SECTION 1: Prologue–The Greek World
There are science-fiction stories, alternate history variety, in which science developed in Greek and Hellenistic civilizations. That it did not, is surprising. Certainly the great minds were there.
1.1 ARCHIMEDES
Foremost among these great minds was Aristotle, a philosopher, and naturalist; the term “physics” comes from the title of his book “Lectures on Nature” (“Phusike Akroasis”) and although, as Bertrand Russell said about this work and also “On the Heavens”, “there is hardly a sentence in either that is not contradicted by modern science”, it set the stage for logical, rational study of the world around us. Where it fell short was relying not on empirical testing of propositions that seemed self-evident, for example: the heavier the body, the faster it would fall to the earth; an object needed a force to keep it moving or it would stop.
1.2 HELLENISTIC MATH AND SCIENCE
The Greek Hellenistic world also had its share of great minds. Eratosthenes calculated the size of the earth (accurate to within 200 miles) using trigonometry and sundials at different locations. Archimedes discovered the principle of buoyancy (whence “Eureka”) and set forth quantitative principles for the lever and the screw. He used approximation methods that foreshadowed the calculus to calculate the area and volumes of non-polygon shapes. Hero of Alexandria invented many ingenious engines and formulated a fundamental principle of optics, that light would take the shortest path within a medium. Examples of Hellenistic math and science are illustrated below. (To cycle through the images click on the first image and then click on the control arrow in the upper right hand corner to advance or stop.)
Hellenistic Math and Science
Why didn’t science come forth from all these inventions and discoveries? Although many bore the marks of genius, they did not correspond to a unified scheme, a core of fundamental theory that is necessary for science. We’ll see in the next section what was done in Medieval Christendom to give a unified scientific picture of the world.
SECTION 2: St. Augustine–A Theologian for Our Times
“Happy those who feast on wisdom and savor her knowledge, She will nourish and refresh them.”
–Hymn for the Office of Readings, 28 August.
2.1 INTRODUCTION
St. Augustine of Hippo lived in the last days of the Roman Empire. He died during the siege of his city by the Vandals. His Confessions should be (indeed are) required reading for all who want to understand what Catholicism is all about. I focus in this chapter on the strikingly modern positions he has taken on topics such as the literal truth of the Old Testament, creation, evolution, and the infinitude of God.
2.2 SAINT AUGUSTINE: CREATION
St. Augustine held that God created the universe from nothing. Two fundamental (and surprisingly modern) notions were introduced by Augustine: based on Sirach 18:
1. Creation was instantaneous (6 days were a metaphorical device).
2. Not all animal forms were present initially at creation — for some, the potential or seed to develop later in a different form was given initially.
St. Augustine argued that time began with the creation. He also stressed that one should not use Scripture to contradict what reason and experience (“Science”) tells us about the world:
“Often a non-Christian knows something about the earth, the heavens, and the other parts of the world, about the motions and orbits of the stars and even their sizes and distances…and this knowledge he holds with certainty from reason and experience. It is thus offensive and disgraceful for an unbeliever to hear a Christian talk nonsense about such things, claiming that what he is saying is based in Scripture. We should do all that we can to avoid such an embarrassing situation, lest the unbeliever see only ignorance in the Christian and laugh to scorn.”
–De Genesi ad litteram; the Literal Meaning of Genesis, an unfinished work.
2.3 SAINT AUGUSTINE: GOD AND INFINITY
Besides being ahead of his time in his ideas about creation, St. Augustine had profound and advanced ideas about the nature of God and infinity. Adam Drozdek (Associate Professor of Computer Science at Duquesne University) has written a fine article about this, Beyond Infinity: Augustine and Cantor, which I’ll try to summarize below:
“There are three important aspects of Augustine’s discussion of the problem of infinity. First, infinity is an inborn concept which enables any knowledge. Second, infinity can be found in the purest form in mathematics, and thus mathematics is the best tool of acquiring knowledge about God. Third, God is neither finite nor infinite and his greatness surpasses even the infinite. [emphasis added] Augustine is original in combining these three aspects in his philosophy; some of them can be found in other philosophers and theologians, but also in mathematicians.”
–Adam Drozdek, “Beyond Infinity: Augustine and Cantor”
Augustine anticipates later developments in mathematics, the mathematics of infinity put forth in set theory, orders of infinity as proposed by the nineteenth Century mathematician George Cantor.
“All infinity is in some ineffable way made finite to God,”
–St. Augustine, “De Civ. Dei (The City of God)”
That is to say, God can understand all orders of infinity from aleph-0 to aleph-n; God is more, is greater than infinity.
SECTION 3: The Medieval Church, Midwife and Nursemaid to Science
3.1 SCIENCE WAS BORN: THE EDICTS OF PARIS, 1277
Some (perhaps many) atheists and materialists would say that science arose in the sixteenth and seventeenth centuries, fully mature, like Botticelli’s Venus arising from the ocean. According to them it arose then because Europe had shaken off the limiting bonds of Catholic doctrine.
Pierre Duhem’s historical studies of science show that this is not so. Rather, Duhem dates the birth of science as 1277, the year the Bishop of Paris, Etienne Tempier, condemned a number of errors from astrology and from the Peripatetic philosophers (those following Aristotle). The condemned articles contended that the earth could not move, that worlds other than earth could not exist, that empty space (a vacuum) was impossible, and proposed principles of motion that were shown later to be false.
Bishop Tempier condemned the articles not because of scientific errors, but because they apparently limited God’s power. Once these Peripatetic dicta were declared non-binding, scholars–almost all of them clerics–were able to explore new ways to explain the world around us, ways that would grow into the scientific method.
For cosmology—the science of the earth’s place in the universe—to come about, the following errors had to be corrected:
?That the earth could not move;
?That the earth was at the center of the universe;
?That different physical laws applied to the earth and to the planets;
?Aristotle’s theory of gravity.
According to Aristotle, gravity manifested itself in the following ways: heavy elements wanted to move to the center of the earth; the heavier the element (the more massive), the faster it would move; the lighter elements, air and fire, would move away from the center of the earth.
For dynamics — the science of motion — to move forward the following error had to be corrected:
“[Aristotle] held that the projectile was moved by the fluid medium, whether air or water, through which it passed and this, by virtue of the vibration brought about in the fluid at the moment of throwing, and spread through it [the vibration through the medium].”
–Pierre Duhem, “History of Physics before Einstein“
When Aristotle’s ideas were no longer regarded as the Ten Commandments of science, cosmology and dynamics could then develop into science as we know it today.
The development of cosmology culminated in the Copernican Revolution, the idea that the earth was no longer the center of the universe but revolved around the sun. But there was much work preliminary to that–the notion did not spring full-blown to Copernicus. To explore this history in depth, please read Duhem’s “History of Physics before Einstein” (linked above).
3.2 THE INFANCY OF SCIENCE: SOME MEDIEVAL SCIENTISTS
Even though Pierre Duhem regards the Edicts of Paris as marking the birth of science, there were important contributions before that time. Listed below are a few of those who started up the engine of science—you’ll note that several of them lived before 1277 and that they were all clerics. A more complete history of the advances in mathematics, astronomy and physics achieved during the Medieval Ages is given in Pierre Duhem’s masterwork linked above.
?Robert Grosseteste, Bishop of Lincoln ? (1175-1253) introduced a principle fundamental to the practice of science: from particular observations a general law can be derived; then this law can be tested by additional observations of particulars—“resolution and composition”,
?Albertus Magnus (Albert the Great), (1200-1280) is the patron saint of scientists. He was the teacher of St. Thomas Aquinas, and made important contributions in zoology, mineralogy in addition to his important work in theology and philosophy.
?William of Ockham (1285-1350) introduced one of the prime principles of science, “Ockham’s Razor”. This states that one does not multiply hypotheses needlessly to explain a phenomenon. In other words, the simplest explanation that fully explains is the best.
?Jean Buridan (1300-1358) is probably more renowned for his analogy, “Buridan’s Ass”, than for his seminal contributions to the physics of motion: the idea of impetus (what we now call “momentum”) and inertia. Contrary to Aristotle, he maintained that a body would continue moving unless slowed down by friction, such as air resistance. He argued that a thrown body was set into motion by the arm of the thrower, and that the “impetus” of the moving body depended on how heavy it was (its mass) and its speed of motion. These were ideas taken up later by Galileo and Newton.
?Nicolas Oresme (1322-1382) was eminent (as were most Medieval Scholastics) in many fields — astronomy, mathematics, physics, philosophy and theology. He anticipated Galileo by almost a hundred years in proving the mean speed theorem geometrically: the distance covered under uniform acceleration is given by multiplying the average speed by the time.
3.3 GALILEO: SCIENCE ENTERS ADOLESCENCE
The work in physics and cosmology set the stage for Galileo–his important contribution was to introduce experimental tests of mathematical hypotheses. He used inclined plane experiments (I did these in my first year physics lab at Caltech) to formulate mathematical laws of motion about velocity and acceleration; he confirmed the Copernican hypothesis, that the earth revolved around the sun, by telescopic observations (see below). Thus, In the physics of motion–dynamics–he refined the idea of uniform acceleration. It should be noted that Galileo’s ideas about dynamics did not yet reach the stage taught today in first year physics classes,
“He then taught that the motion of a freely falling body was uniformly accelerated; in favour of this law, he contented himself with appealing to its simplicity without considering the continual increase of impetus under the influence of gravity. Gravity creates, in equal periods, a new and uniform impetus which, added to that already acquired, causes the total impetus to increase in arithmetical progression according to the time occupied in the fall; hence the velocity of the falling body.”
–Pierre Duhem, History of Physics before Einstein
The picture below illustrates the well-known anecdote: Galileo tested his ideas about gravity and acceleration by dropping a light body (hollow circle) and a heavy body (filled in circle) from the Leaning Tower of Pisa. This was a “thought experiment” of his, not carried out, So we see that although Galileo achieved much in setting physics as a science, he still followed in the tradition of his predecessors. The relation of acceleration to force had to wait for Newton’s Law, Force= mass x acceleration or F = ma.
Although Galileo made a huge step forward by his use of the telescope contributions to astronomy, he did build on the work of his predecessors. . He argued that the light and shadow patterns on the moon showed that it had mountains. He demonstrated the the planet Jupiter had satellites, and from the differing phases of Venus as it circled the sun, that the sun was the center of the solar system, and the earth orbited the sun. He also demonstrated that the sun had spots that moved with the rotation of the sun.
One point we should emphasize: despite his trials with Church hierarchy (see Section 4), Galileo was a true believer in God as author of a divine order that we could understand through science and mathematics:
“The laws of nature are written by the hand of God in the language of mathematics.” – Galileo Galilei (Il Saggiatore, 1623)
3.4 THE CATHOLIC CHURCH: NURSEMAID TO SCIENCE
Why did this development of physics and cosmology occur begin and grow in Medieval Christendom, but not in the ancient Hellenistic worlds or other civilizations? Excellent answers have been given in some detail by Fr. Stanley Jaki and Dr. Stacy Trasancos, but I want to add my own opinion.
?First, there was a world view, founded on Judaeo-Christian theology, that God was good and created a universe that was good and meant to be intelligible to mankind.
?Second, as Pierre Duhem pointed out, the Medieval scholars were freed in 1277 from erroneous restrictions they would have had to follow if Aristotle’s principles were to be a compulsory base for theories.
?Third, in the earliest part of this growth they were priests; this meant that they had time to do scholarly work (as do academics today) and did not have to worry about earning a living from non-scholarly pursuits.
?Fourth, perhaps underlaying all the above, those in the Church were highly motivated to learn—to relate the world around them to that which Revelation and Faith had given them to believe. The term “scholastic” for these Medieval priests was apt indeed.
Finally, I want to emphasize again: there was a continuity of development from the 13th century to Galileo. Although his pioneering development of the experimental method to confirm mathematically expressed theoretical ideas laid the foundations for modern science, science did not spring fully new from Galileo’s work. He built on the work of his predecessors.
By: Robert J. Kurland, Ph.D., Catholic Scientist
From: