Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
Volodymyr Nechyporuk-Zloy
10%+ Growth Driver | Manager | Microscopist | DL Imaging
Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
Arganda-Carreras, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H
State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.
TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at https://imagej.net/Trainable_Weka_Segmentation .