Titanic - Machine Learning from Disaster | Kaggle
Titanic - Machine Learning from Disaster: The Titanic's sinking in 1912 led to 1502 deaths out of 2224 people due to insufficient lifeboats. This challenge asks you to predict which passengers were more likely to survive using data such as age, gender, and class. Steps include data cleaning, EDA, feature engineering, model training, evaluation.
Here's a more detailed breakdown of each step to enhance your Jupyter notebook for the Titanic dataset analysis:
1. Data Understanding
2. Data Preprocessing
3. Exploratory Data Analysis (EDA)
4. Model Building
5. Model Evaluation
领英推荐
6. Hyperparameter Tuning
Define a parameter grid for the chosen models.
Use GridSearchCV to search for the best combination of hyperparameters.
Document the selected parameters and justify the choices based on the cross-validated score.
7. Model Interpretation
8. Conclusion and Next Steps
9. Documentation and Comments
This detailed approach will make your notebook not only a strong analytical tool but also a clear and educational resource for others. If you need further assistance with any of these steps, feel free to ask!
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
/kaggle/input/titanic/train.csv
/kaggle/input/titanic/test.csv
/kaggle/input/titanic/gender_submission.csv
import primary library in python
import pandas as pd # Data manipulation and analysis
import numpy as np # Numerical operations
import matplotlib.pyplot as plt # Data visualization
import seaborn as sns # High-level data visualization based on matplotlib
from sklearn.impute import SimpleImputer # Handling missing values
from sklearn.preprocessing import OneHotEncoder # Encoding categorical features
from sklearn.compose import ColumnTransformer # Applying transformers to columns
from sklearn.pipeline import Pipeline # Assembling steps for cross-validation
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier # Machine learning algorithm for classification
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score # Cross-validation for evaluating scores
pd.set_option('display.max_rows', None) # Display all rows in pandas DataFrame
from sklearn.model_selection import train_test_split, GridSearchCV, StratifiedKFold
from sklearn.preprocessing import StandardScaler, OneHotEncoder, OrdinalEncoder
from sklearn.decomposition import PCA
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Models
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
import warnings
# Ignore all warnings
warnings.filterwarnings('ignore')
Import Titanic dataset:
# Read the CSV files into pandas DataFrames
train_df = pd.read_csv("/kaggle/input/titanic/train.csv")
test_df = pd.read_csv("/kaggle/input/titanic/test.csv")
gender_submission_df = pd.read_csv("/kaggle/input/titanic/gender_submission.csv")
train_df.head(3)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
print(train_df.shape)
print(test_df.shape)
(891, 12)
(418, 11)
Statistical Data
print(train_df.describe())
print(test_df.describe())
PassengerId Survived Pclass Age SibSp \
count 891.000000 891.000000 891.000000 714.000000 891.000000
mean 446.000000 0.383838 2.308642 29.699118 0.523008
std 257.353842 0.486592 0.836071 14.526497 1.102743
min 1.000000 0.000000 1.000000 0.420000 0.000000
25% 223.500000 0.000000 2.000000 20.125000 0.000000
50% 446.000000 0.000000 3.000000 28.000000 0.000000
75% 668.500000 1.000000 3.000000 38.000000 1.000000
max 891.000000 1.000000 3.000000 80.000000 8.000000
Parch Fare
count 891.000000 891.000000
mean 0.381594 32.204208
std 0.806057 49.693429
min 0.000000 0.000000
25% 0.000000 7.910400
50% 0.000000 14.454200
75% 0.000000 31.000000
max 6.000000 512.329200
PassengerId Pclass Age SibSp Parch Fare
count 418.000000 418.000000 332.000000 418.000000 418.000000 417.000000
mean 1100.500000 2.265550 30.272590 0.447368 0.392344 35.627188
std 120.810458 0.841838 14.181209 0.896760 0.981429 55.907576
min 892.000000 1.000000 0.170000 0.000000 0.000000 0.000000
25% 996.250000 1.000000 21.000000 0.000000 0.000000 7.895800
50% 1100.500000 3.000000 27.000000 0.000000 0.000000 14.454200
75% 1204.750000 3.000000 39.000000 1.000000 0.000000 31.500000
max 1309.000000 3.000000 76.000000 8.000000 9.000000 512.329200
print(train_df.info())
print(test_df.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex 891 non-null object
5 Age 714 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
None
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 PassengerId 418 non-null int64
1 Pclass 418 non-null int64
2 Name 418 non-null object
3 Sex 418 non-null object
4 Age 332 non-null float64
5 SibSp 418 non-null int64
6 Parch 418 non-null int64
7 Ticket 418 non-null object
8 Fare 417 non-null float64
9 Cabin 91 non-null object
10 Embarked 418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB
None
Exploratory data analysis (EDA)
# Function for Finding missing value
def plot_missing_data(dataset, title):
fig, ax = plt.subplots(figsize=(5,5))
plt.title(title)
sns.heatmap(dataset.isnull(), cbar=False)
plot_missing_data(train_df, "Training Dataset")
plot_missing_data(test_df, "Test Dataset")
train_df.isnull().sum()
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
test_df.isnull().sum()
PassengerId 0
Pclass 0
Name 0
Sex 0
Age 86
SibSp 0
Parch 0
Ticket 0
Fare 1
Cabin 327
Embarked 0
dtype: int64
# Make a Function for Barchart to visualized
def bar_chart_stacked(dataset, feature, stacked=True):
alive = dataset[dataset['Survived'] == 1][feature].value_counts()
dead = dataset[dataset['Survived'] == 0][feature].value_counts()
df_alive_dead = pd.DataFrame([alive, dead])
df_alive_dead.index = ['Passengers Alive', 'Passengers Died']
ax = df_alive_dead.plot(kind='bar', stacked=stacked, figsize=(8, 5))
# Annotate the bars with the counts for each segment
for container in ax.containers:
ax.bar_label(container, label_type='center')
# Calculate and annotate the total count for each bar
totals = df_alive_dead.sum(axis=1)
for i, total in enumerate(totals):
ax.text(i, total + 1, str(total), ha='center', va='bottom', weight='bold')
plt.title(f'Stacked Bar Chart of {feature}')
plt.xlabel(feature)
plt.ylabel('Number of Passengers')
plt.show()
bar_chart_stacked(train_df, 'Sex')
train_df.groupby('Sex').Survived.mean()
Sex
female 0.742038
male 0.188908
Name: Survived, dtype: float64
bar_chart_stacked(train_df, "Survived")
#Analyze Feature Pclass:
bar_chart_stacked(train_df, 'Pclass')
pd.pivot_table(train_df, index='Survived', columns='Pclass', values='PassengerId', aggfunc='count')
Pclass 1 2 3
Survived
0 80 97 372
1 136 87 119
train_df.groupby(['Pclass']).Survived.mean()
Pclass
1 0.629630
2 0.472826
3 0.242363
Name: Survived, dtype: float64
Observation:
From the plots and tables presented above, it becomes evident that the passenger class (Pclass) is a significant factor to consider when analyzing survival rates. The data indicates a clear correlation between a passenger's class and their likelihood of survival.
Passengers in higher classes (e.g., 1st class) tend to have higher survival rates compared to those in lower classes (e.g., 3rd class).
# Function for Barchart Compare
def bar_compare(dataset, feature1, feature2=None):
plt.figure(figsize = [5,5])
g = sns.barplot(x=feature1, y='Survived', hue=feature2, ci=None, data=dataset).set_ylabel('Survival rate')
bar_compare(train_df, "Pclass", "Sex")
pd.pivot_table(train_df, index = 'Survived', columns = ['Pclass', "Sex"], values = 'PassengerId' ,aggfunc ='count')
Pclass 1 2 3
Sex female male female male female male
Survived
0 3 77 6 91 72 300
1 91 45 70 17 72 47
train_df.groupby(['Pclass']).Survived.mean().to_frame()
Survived
Pclass
1 0.629630
2 0.472826
3 0.242363
pd.crosstab(train_df['Sex'], train_df['Survived'])
Survived 0 1
Sex
female 81 233
male 468 109
pd.crosstab(train_df['Pclass'], train_df['Survived'])
Survived 0 1
Pclass
1 80 136
2 97 87
3 372 119
train_df.groupby(['Pclass', "Sex"]).Survived.mean().to_frame()
Survived
Pclass Sex
1 female 0.968085
male 0.368852
2 female 0.921053
male 0.157407
3 female 0.500000
male 0.135447
From the plots and tables above, it becomes clear that the Pclass and Sex is an important factor to consider.
Here Analyze Age, is it importent?
# Bell curve
def plot_distribution(dataset, feature, title, bins = 30, hist = True, fsize = (5,5), fize = (155)):
fig, ax = plt.subplots(figsize=fsize)
ax.set_title(title)
sns.distplot(train_df[feature], color='g', bins=bins, ax=ax)
# Age Distribution Surived vs Died
def plot_kernel_density_estimate_survivors(dataset, feature1, title, fsize = (5,5)):
fig, ax = plt.subplots(figsize=fsize)
ax.set_title(title)
sns.kdeplot(dataset[feature1].loc[train_df["Survived"] == 1],color='g',
shade= True, ax=ax, label='Survived').set_xlabel(feature1)
sns.kdeplot(dataset[feature1].loc[train_df["Survived"] == 0],
shade=True, ax=ax, label="Died" , color='r')
plot_distribution(train_df, 'Age', "Passengers age")
plot_kernel_density_estimate_survivors(train_df, 'Age', "Passengers age with Survived")
To analyze the features "Age" and "Sex" together and visualize their impact
def swarmplot_survivors(dataset, feature1, feature2, title):
fig, ax = plt.subplots(figsize=(18,5))
# Turns off grid on the left Axis.
ax.grid(True)
plt.xticks(list(range(0,100,2)))
sns.swarmplot(y=feature1, x=feature2, hue='Survived', hue_order=[1, 0],palette={1: 'green', 0: 'red'}, data=train_df).set_title(title)
swarmplot_survivors(train_df, 'Sex','Age', "Survivor Swarmplot for Age vs Sex")
Observations:
Age Distribution:
There are more young survivors (ages 0-10) in the 'female' category compared to the 'male' category. The age distribution among males shows a higher concentration in the 20-40 age range. Females also show a significant concentration in the 20-40 age range but with more survivors than males.
Survival Rate by Gender:
There are more orange dots (survivors) among females across all age groups, indicating a higher survival rate for females. Males have more blue dots (non-survivors) compared to females, especially noticeable in the 20-40 age range.
Outliers:
There are few older individuals (70-80 years) in both categories, with very few survivors.
-->Analyze Features Age and Pclass together
swarmplot_survivors(train_df, 'Pclass', 'Age', 'Age vs Pclass' )
First class is more survived then second class with more female
Analyze Fare
train_df["Fare"].describe().to_frame()
Fare
count 891.000000
mean 32.204208
std 49.693429
min 0.000000
25% 7.910400
50% 14.454200
75% 31.000000
max 512.329200
plot_distribution(train_df, 'Fare', "Passengers fare")
Observation:
The Fare data does not follow a normal distribution and exhibits a significant peak in the price range of
100.
The distribution is skewed to the right, with 75% of fares being under 31USD and a maximum fare of 512USD. Given this skewness, it might be beneficial to normalize this feature, depending on the machine learning model being used. This will be addressed in the feature engineering stage.
To understand how the Fare feature influences the survival rate, we could plot bar charts of Fare vs. Survived. However, due to the wide range of fare values, such a plot may not provide meaningful insights.
A more effective visualization would involve categorizing the fare values and then plotting these categories against the survival rate.
def plot_quartiles(dataset, feature, title, categories):
fig, axarr = plt.subplots(figsize=(5,5))
fare_ranges = pd.qcut(dataset[feature], len(categories), labels = categories) #. [0, .25, .5, .75, 1.]
axarr.set_title(title)
sns.barplot(x=fare_ranges, y=dataset.Survived, ci=None, ax=axarr).set_ylabel('Survival rate')
categories = ['Cheap', 'Standard', 'Expensive', 'Luxury']
plot_quartiles(train_df, "Fare", "Survival Rate by Fare Ranges/Categories", categories)
swarmplot_survivors(train_df, "Sex", "Fare","Survivor Swarmplot for Age vs Gender")
train_df.Fare.value_counts()
Fare
8.0500 43
13.0000 42
7.8958 38
7.7500 34
26.0000 31
10.5000 24
7.9250 18
7.7750 16
7.2292 15
0.0000 15
26.5500 15
7.8542 13
8.6625 13
7.2500 13
7.2250 12
9.5000 9
16.1000 9
24.1500 8
15.5000 8
14.4542 7
69.5500 7
52.0000 7
7.0500 7
56.4958 7
14.5000 7
31.2750 7
39.6875 6
7.7958 6
27.9000 6
30.0000 6
46.9000 6
26.2500 6
21.0000 6
27.7208 5
29.1250 5
15.2458 5
73.5000 5
30.5000 5
53.1000 5
39.0000 4
90.0000 4
15.8500 4
13.5000 4
7.5500 4
23.0000 4
12.4750 4
25.4667 4
7.1250 4
7.6500 4
21.0750 4
7.7333 4
11.5000 4
34.3750 4
7.8792 4
19.2583 4
227.5250 4
27.7500 4
263.0000 4
31.3875 4
79.2000 4
151.5500 4
35.5000 4
120.0000 4
110.8833 4
7.4958 3
83.1583 3
211.3375 3
33.0000 3
20.5250 3
86.5000 3
12.3500 3
512.3292 3
31.0000 3
113.2750 3
77.9583 3
29.7000 3
135.6333 3
26.2875 3
153.4625 3
79.6500 3
18.7500 3
52.5542 3
14.4583 3
76.7292 3
41.5792 3
11.1333 3
18.0000 3
15.7417 2
65.0000 2
134.5000 2
164.8667 2
262.3750 2
82.1708 2
56.9292 2
108.9000 2
24.0000 2
133.6500 2
11.2417 2
7.0542 2
23.2500 2
78.8500 2
20.2500 2
17.8000 2
19.5000 2
57.9792 2
9.2250 2
15.9000 2
106.4250 2
49.5042 2
9.5875 2
16.7000 2
30.0708 2
93.5000 2
89.1042 2
19.9667 2
55.9000 2
83.4750 2
14.4000 2
71.0000 2
7.8292 2
39.6000 2
146.5208 2
69.3000 2
51.8625 2
80.0000 2
91.0792 2
78.2667 2
27.0000 2
55.0000 2
9.8250 2
30.6958 2
247.5208 2
20.2125 2
77.2875 2
37.0042 2
25.9292 2
66.6000 2
6.4958 2
10.4625 2
23.4500 2
20.5750 2
18.7875 2
9.3500 2
22.3583 2
57.0000 2
36.7500 2
6.9750 2
29.0000 2
6.7500 2
7.7375 2
9.0000 2
5.0000 1
14.1083 1
9.8458 1
39.4000 1
13.8625 1
7.6292 1
13.8583 1
22.5250 1
49.5000 1
50.4958 1
221.7792 1
59.4000 1
34.0208 1
51.4792 1
17.4000 1
8.4583 1
26.3875 1
6.4375 1
10.1708 1
13.4167 1
8.1375 1
7.7417 1
9.4833 1
15.1000 1
9.8417 1
25.5875 1
8.4333 1
8.3625 1
32.3208 1
8.6833 1
8.5167 1
7.8875 1
15.5500 1
6.4500 1
6.9500 1
15.0000 1
8.7125 1
40.1250 1
8.3000 1
42.4000 1
26.2833 1
12.2875 1
7.5208 1
7.8000 1
61.9792 1
8.1583 1
71.2833 1
12.2750 1
7.7875 1
47.1000 1
61.1750 1
76.2917 1
34.6542 1
8.4042 1
50.0000 1
22.0250 1
63.3583 1
15.0500 1
28.7125 1
8.6542 1
33.5000 1
25.9250 1
15.7500 1
7.1417 1
61.3792 1
7.3125 1
12.5250 1
15.0458 1
12.8750 1
8.8500 1
21.6792 1
12.6500 1
7.0458 1
9.8375 1
13.7917 1
7.7250 1
38.5000 1
16.0000 1
81.8583 1
8.1125 1
7.8750 1
32.5000 1
6.8583 1
8.0292 1
9.4750 1
12.0000 1
7.7292 1
9.2167 1
4.0125 1
211.5000 1
55.4417 1
75.2500 1
35.0000 1
28.5000 1
6.2375 1
14.0000 1
10.5167 1
Name: count, dtype: int64
Observation:
Fifteen passengers paid no fare, which is unrealistic. Therefore, I will replace the 0 values with NaN and later determine an appropriate method to impute these values
# Replace Fare == 0 with nan
train_df['Fare'] = train_df['Fare'].replace(0, np.nan)
test_df['Fare'] = train_df['Fare'].replace(0, np.nan)
train_df[train_df['Fare']==0]
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
test_df[test_df['Fare']==0]
PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
Analyze Feature Embarked
def countplot(dataset, feature, title, fsize = (5,5)):
fig, ax = plt.subplots(figsize=fsize)
sns.countplot(dataset[feature], ax=ax).set_title(title)
def compare_countplot(dataset, feature1, feature2, title):
fig, ax = plt.subplots(figsize=(5,5))
p = sns.countplot(x = feature1, hue = feature2, data = dataset, ax=ax).set_title(title)
bar_chart_stacked(train_df, 'Embarked')
compare_countplot(train_df, "Embarked", "Survived", "Survivor count by place of embarktion")
pd.pivot_table(train_df, index = 'Survived', columns = 'Embarked', values = 'PassengerId' ,aggfunc ='count')
Embarked C Q S
Survived
0 75 47 427
1 93 30 217
len(train_df.query('Embarked == "C" and Survived==1'))
93
train_df.groupby(['Embarked']).Survived.mean().to_frame()
Survived
Embarked
C 0.553571
Q 0.389610
S 0.336957
Observation:
The Embarked feature includes three values: Southampton, Cherbourg, and Queenstown. Most passengers boarded in Southampton, but only 33% survived. In contrast, Cherbourg had a survival rate of 55%.
It’s not intuitive that the place of boarding would affect survival. Why is it higher for Cherbourg? One possible explanation is the percentage of first-class passengers who embarked there, as first-class status is linked to higher survival rates.
Analyze Features Embarked & Pclass at a time
compare_countplot(train_df, 'Embarked', 'Pclass', 'Embarked vs Pclass')
train_df.groupby(['Pclass', 'Embarked', "Sex"]).Survived.sum().to_frame()
Survived
Pclass Embarked Sex
1 C female 42
male 17
Q female 1
male 0
S female 46
male 28
2 C female 7
male 2
Q female 2
male 0
S female 61
male 15
3 C female 15
male 10
Q female 24
male 3
S female 33
male 34
General Observations
Survival by Gender:
Females generally had a higher survival count than males across all classes and ports of embarkation. In Pclass 1, the number of female survivors was notably higher than male survivors. In Pclass 2, the difference is even more pronounced, especially for those who embarked at S (61 females vs. 15 males). In Pclass 3, the trend of higher female survivors continues but with more variation across different embarkation ports. Survival by Embarkation Port:
For Pclass 1 and Pclass 2, the majority of survivors embarked at S (Southampton), followed by C (Cherbourg), with Q (Queenstown) having the least number of survivors. For Pclass 3, the survival count is more evenly distributed among the ports, especially among females. Survival by Passenger Class:
Pclass 1 had relatively high survival counts, particularly among females. Pclass 2 had fewer survivors compared to Pclass 1, but females still had a significant number of survivors. Pclass 3 showed a mixed trend with a considerable number of survivors but more evenly distributed compared to Pclass 1 and 2.
Analyze Features Embarked & Se
compare_countplot(train_df, "Embarked", "Sex", "Passenger count by place of embarktion and sex")
Analyze Feature SibSp
train_df['SibSp'].value_counts().to_frame()
count
SibSp
0 608
1 209
2 28
4 18
3 16
8 7
5 5
bar_compare(train_df, "SibSp")
train_df.groupby(['SibSp']).Survived.mean().to_frame()
Survived
SibSp
0 0.345395
1 0.535885
2 0.464286
3 0.250000
4 0.166667
5 0.000000
8 0.000000
compare_countplot(train_df, "SibSp", "Survived", "Survivor count by number of sibling the Titanic")
Analyze Feature Parch
bar_compare(train_df, "Parch")
train_df.groupby(['Parch']).Survived.mean().to_frame()
Survived
Parch
0 0.343658
1 0.550847
2 0.500000
3 0.600000
4 0.000000
5 0.200000
6 0.000000
Observation:
This feature, like the SibSp column, represents the number of parents or children each passenger was traveling with. Similar patterns emerge: small families had higher survival rates compared to larger families and passengers traveling alone.
Feature engineering
Feature Name:
pd.unique(train_df['Name'])
array(['Braund, Mr. Owen Harris',
'Cumings, Mrs. John Bradley (Florence Briggs Thayer)',
'Heikkinen, Miss. Laina',
'Futrelle, Mrs. Jacques Heath (Lily May Peel)',
'Allen, Mr. William Henry', 'Moran, Mr. James',
'McCarthy, Mr. Timothy J', 'Palsson, Master. Gosta Leonard',
'Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)',
'Nasser, Mrs. Nicholas (Adele Achem)',
'Sandstrom, Miss. Marguerite Rut', 'Bonnell, Miss. Elizabeth',
'Saundercock, Mr. William Henry', 'Andersson, Mr. Anders Johan',
'Vestrom, Miss. Hulda Amanda Adolfina',
'Hewlett, Mrs. (Mary D Kingcome) ', 'Rice, Master. Eugene',
'Williams, Mr. Charles Eugene',
'Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)',
'Masselmani, Mrs. Fatima', 'Fynney, Mr. Joseph J',
'Beesley, Mr. Lawrence', 'McGowan, Miss. Anna "Annie"',
'Sloper, Mr. William Thompson', 'Palsson, Miss. Torborg Danira',
'Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)',
'Emir, Mr. Farred Chehab', 'Fortune, Mr. Charles Alexander',
'O\'Dwyer, Miss. Ellen "Nellie"', 'Todoroff, Mr. Lalio',
'Uruchurtu, Don. Manuel E',
'Spencer, Mrs. William Augustus (Marie Eugenie)',
'Glynn, Miss. Mary Agatha', 'Wheadon, Mr. Edward H',
'Meyer, Mr. Edgar Joseph', 'Holverson, Mr. Alexander Oskar',
'Mamee, Mr. Hanna', 'Cann, Mr. Ernest Charles',
'Vander Planke, Miss. Augusta Maria',
'Nicola-Yarred, Miss. Jamila',
'Ahlin, Mrs. Johan (Johanna Persdotter Larsson)',
'Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)',
'Kraeff, Mr. Theodor', 'Laroche, Miss. Simonne Marie Anne Andree',
'Devaney, Miss. Margaret Delia', 'Rogers, Mr. William John',
'Lennon, Mr. Denis', "O'Driscoll, Miss. Bridget",
'Samaan, Mr. Youssef',
'Arnold-Franchi, Mrs. Josef (Josefine Franchi)',
'Panula, Master. Juha Niilo', 'Nosworthy, Mr. Richard Cater',
'Harper, Mrs. Henry Sleeper (Myna Haxtun)',
'Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)',
'Ostby, Mr. Engelhart Cornelius', 'Woolner, Mr. Hugh',
'Rugg, Miss. Emily', 'Novel, Mr. Mansouer',
'West, Miss. Constance Mirium',
'Goodwin, Master. William Frederick', 'Sirayanian, Mr. Orsen',
'Icard, Miss. Amelie', 'Harris, Mr. Henry Birkhardt',
'Skoog, Master. Harald', 'Stewart, Mr. Albert A',
'Moubarek, Master. Gerios', 'Nye, Mrs. (Elizabeth Ramell)',
'Crease, Mr. Ernest James', 'Andersson, Miss. Erna Alexandra',
'Kink, Mr. Vincenz', 'Jenkin, Mr. Stephen Curnow',
'Goodwin, Miss. Lillian Amy', 'Hood, Mr. Ambrose Jr',
'Chronopoulos, Mr. Apostolos', 'Bing, Mr. Lee',
'Moen, Mr. Sigurd Hansen', 'Staneff, Mr. Ivan',
'Moutal, Mr. Rahamin Haim', 'Caldwell, Master. Alden Gates',
'Dowdell, Miss. Elizabeth', 'Waelens, Mr. Achille',
'Sheerlinck, Mr. Jan Baptist', 'McDermott, Miss. Brigdet Delia',
'Carrau, Mr. Francisco M', 'Ilett, Miss. Bertha',
'Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)',
'Ford, Mr. William Neal', 'Slocovski, Mr. Selman Francis',
'Fortune, Miss. Mabel Helen', 'Celotti, Mr. Francesco',
'Christmann, Mr. Emil', 'Andreasson, Mr. Paul Edvin',
'Chaffee, Mr. Herbert Fuller', 'Dean, Mr. Bertram Frank',
'Coxon, Mr. Daniel', 'Shorney, Mr. Charles Joseph',
'Goldschmidt, Mr. George B', 'Greenfield, Mr. William Bertram',
'Doling, Mrs. John T (Ada Julia Bone)', 'Kantor, Mr. Sinai',
'Petranec, Miss. Matilda', 'Petroff, Mr. Pastcho ("Pentcho")',
'White, Mr. Richard Frasar', 'Johansson, Mr. Gustaf Joel',
'Gustafsson, Mr. Anders Vilhelm', 'Mionoff, Mr. Stoytcho',
'Salkjelsvik, Miss. Anna Kristine', 'Moss, Mr. Albert Johan',
'Rekic, Mr. Tido', 'Moran, Miss. Bertha',
'Porter, Mr. Walter Chamberlain', 'Zabour, Miss. Hileni',
'Barton, Mr. David John', 'Jussila, Miss. Katriina',
'Attalah, Miss. Malake', 'Pekoniemi, Mr. Edvard',
'Connors, Mr. Patrick', 'Turpin, Mr. William John Robert',
'Baxter, Mr. Quigg Edmond', 'Andersson, Miss. Ellis Anna Maria',
'Hickman, Mr. Stanley George', 'Moore, Mr. Leonard Charles',
'Nasser, Mr. Nicholas', 'Webber, Miss. Susan',
'White, Mr. Percival Wayland', 'Nicola-Yarred, Master. Elias',
'McMahon, Mr. Martin', 'Madsen, Mr. Fridtjof Arne',
'Peter, Miss. Anna', 'Ekstrom, Mr. Johan', 'Drazenoic, Mr. Jozef',
'Coelho, Mr. Domingos Fernandeo',
'Robins, Mrs. Alexander A (Grace Charity Laury)',
'Weisz, Mrs. Leopold (Mathilde Francoise Pede)',
'Sobey, Mr. Samuel James Hayden', 'Richard, Mr. Emile',
'Newsom, Miss. Helen Monypeny', 'Futrelle, Mr. Jacques Heath',
'Osen, Mr. Olaf Elon', 'Giglio, Mr. Victor',
'Boulos, Mrs. Joseph (Sultana)', 'Nysten, Miss. Anna Sofia',
'Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)',
'Burke, Mr. Jeremiah', 'Andrew, Mr. Edgardo Samuel',
'Nicholls, Mr. Joseph Charles',
'Andersson, Mr. August Edvard ("Wennerstrom")',
'Ford, Miss. Robina Maggie "Ruby"',
'Navratil, Mr. Michel ("Louis M Hoffman")',
'Byles, Rev. Thomas Roussel Davids', 'Bateman, Rev. Robert James',
'Pears, Mrs. Thomas (Edith Wearne)', 'Meo, Mr. Alfonzo',
'van Billiard, Mr. Austin Blyler', 'Olsen, Mr. Ole Martin',
'Williams, Mr. Charles Duane', 'Gilnagh, Miss. Katherine "Katie"',
'Corn, Mr. Harry', 'Smiljanic, Mr. Mile',
'Sage, Master. Thomas Henry', 'Cribb, Mr. John Hatfield',
'Watt, Mrs. James (Elizabeth "Bessie" Inglis Milne)',
'Bengtsson, Mr. John Viktor', 'Calic, Mr. Jovo',
'Panula, Master. Eino Viljami',
'Goldsmith, Master. Frank John William "Frankie"',
'Chibnall, Mrs. (Edith Martha Bowerman)',
'Skoog, Mrs. William (Anna Bernhardina Karlsson)',
'Baumann, Mr. John D', 'Ling, Mr. Lee',
'Van der hoef, Mr. Wyckoff', 'Rice, Master. Arthur',
'Johnson, Miss. Eleanor Ileen', 'Sivola, Mr. Antti Wilhelm',
'Smith, Mr. James Clinch', 'Klasen, Mr. Klas Albin',
'Lefebre, Master. Henry Forbes', 'Isham, Miss. Ann Elizabeth',
'Hale, Mr. Reginald', 'Leonard, Mr. Lionel',
'Sage, Miss. Constance Gladys', 'Pernot, Mr. Rene',
'Asplund, Master. Clarence Gustaf Hugo',
'Becker, Master. Richard F', 'Kink-Heilmann, Miss. Luise Gretchen',
'Rood, Mr. Hugh Roscoe',
'O\'Brien, Mrs. Thomas (Johanna "Hannah" Godfrey)',
'Romaine, Mr. Charles Hallace ("Mr C Rolmane")',
'Bourke, Mr. John', 'Turcin, Mr. Stjepan', 'Pinsky, Mrs. (Rosa)',
'Carbines, Mr. William',
'Andersen-Jensen, Miss. Carla Christine Nielsine',
'Navratil, Master. Michel M',
'Brown, Mrs. James Joseph (Margaret Tobin)',
'Lurette, Miss. Elise', 'Mernagh, Mr. Robert',
'Olsen, Mr. Karl Siegwart Andreas',
'Madigan, Miss. Margaret "Maggie"',
'Yrois, Miss. Henriette ("Mrs Harbeck")',
'Vande Walle, Mr. Nestor Cyriel', 'Sage, Mr. Frederick',
'Johanson, Mr. Jakob Alfred', 'Youseff, Mr. Gerious',
'Cohen, Mr. Gurshon "Gus"', 'Strom, Miss. Telma Matilda',
'Backstrom, Mr. Karl Alfred', 'Albimona, Mr. Nassef Cassem',
'Carr, Miss. Helen "Ellen"', 'Blank, Mr. Henry', 'Ali, Mr. Ahmed',
'Cameron, Miss. Clear Annie', 'Perkin, Mr. John Henry',
'Givard, Mr. Hans Kristensen', 'Kiernan, Mr. Philip',
'Newell, Miss. Madeleine', 'Honkanen, Miss. Eliina',
'Jacobsohn, Mr. Sidney Samuel', 'Bazzani, Miss. Albina',
'Harris, Mr. Walter', 'Sunderland, Mr. Victor Francis',
'Bracken, Mr. James H', 'Green, Mr. George Henry',
'Nenkoff, Mr. Christo', 'Hoyt, Mr. Frederick Maxfield',
'Berglund, Mr. Karl Ivar Sven', 'Mellors, Mr. William John',
'Lovell, Mr. John Hall ("Henry")', 'Fahlstrom, Mr. Arne Jonas',
'Lefebre, Miss. Mathilde',
'Harris, Mrs. Henry Birkhardt (Irene Wallach)',
'Larsson, Mr. Bengt Edvin', 'Sjostedt, Mr. Ernst Adolf',
'Asplund, Miss. Lillian Gertrud',
'Leyson, Mr. Robert William Norman',
'Harknett, Miss. Alice Phoebe', 'Hold, Mr. Stephen',
'Collyer, Miss. Marjorie "Lottie"',
'Pengelly, Mr. Frederick William', 'Hunt, Mr. George Henry',
'Zabour, Miss. Thamine', 'Murphy, Miss. Katherine "Kate"',
'Coleridge, Mr. Reginald Charles', 'Maenpaa, Mr. Matti Alexanteri',
'Attalah, Mr. Sleiman', 'Minahan, Dr. William Edward',
'Lindahl, Miss. Agda Thorilda Viktoria',
'Hamalainen, Mrs. William (Anna)', 'Beckwith, Mr. Richard Leonard',
'Carter, Rev. Ernest Courtenay', 'Reed, Mr. James George',
'Strom, Mrs. Wilhelm (Elna Matilda Persson)',
'Stead, Mr. William Thomas', 'Lobb, Mr. William Arthur',
'Rosblom, Mrs. Viktor (Helena Wilhelmina)',
'Touma, Mrs. Darwis (Hanne Youssef Razi)',
'Thorne, Mrs. Gertrude Maybelle', 'Cherry, Miss. Gladys',
'Ward, Miss. Anna', 'Parrish, Mrs. (Lutie Davis)',
'Smith, Mr. Thomas', 'Asplund, Master. Edvin Rojj Felix',
'Taussig, Mr. Emil', 'Harrison, Mr. William', 'Henry, Miss. Delia',
'Reeves, Mr. David', 'Panula, Mr. Ernesti Arvid',
'Persson, Mr. Ernst Ulrik',
'Graham, Mrs. William Thompson (Edith Junkins)',
'Bissette, Miss. Amelia', 'Cairns, Mr. Alexander',
'Tornquist, Mr. William Henry',
'Mellinger, Mrs. (Elizabeth Anne Maidment)',
'Natsch, Mr. Charles H', 'Healy, Miss. Hanora "Nora"',
'Andrews, Miss. Kornelia Theodosia',
'Lindblom, Miss. Augusta Charlotta', 'Parkes, Mr. Francis "Frank"',
'Rice, Master. Eric', 'Abbott, Mrs. Stanton (Rosa Hunt)',
'Duane, Mr. Frank', 'Olsson, Mr. Nils Johan Goransson',
'de Pelsmaeker, Mr. Alfons', 'Dorking, Mr. Edward Arthur',
'Smith, Mr. Richard William', 'Stankovic, Mr. Ivan',
'de Mulder, Mr. Theodore', 'Naidenoff, Mr. Penko',
'Hosono, Mr. Masabumi', 'Connolly, Miss. Kate',
'Barber, Miss. Ellen "Nellie"',
'Bishop, Mrs. Dickinson H (Helen Walton)',
'Levy, Mr. Rene Jacques', 'Haas, Miss. Aloisia',
'Mineff, Mr. Ivan', 'Lewy, Mr. Ervin G', 'Hanna, Mr. Mansour',
'Allison, Miss. Helen Loraine', 'Saalfeld, Mr. Adolphe',
'Baxter, Mrs. James (Helene DeLaudeniere Chaput)',
'Kelly, Miss. Anna Katherine "Annie Kate"', 'McCoy, Mr. Bernard',
'Johnson, Mr. William Cahoone Jr', 'Keane, Miss. Nora A',
'Williams, Mr. Howard Hugh "Harry"',
'Allison, Master. Hudson Trevor', 'Fleming, Miss. Margaret',
'Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)',
'Abelson, Mr. Samuel', 'Francatelli, Miss. Laura Mabel',
'Hays, Miss. Margaret Bechstein', 'Ryerson, Miss. Emily Borie',
'Lahtinen, Mrs. William (Anna Sylfven)', 'Hendekovic, Mr. Ignjac',
'Hart, Mr. Benjamin', 'Nilsson, Miss. Helmina Josefina',
'Kantor, Mrs. Sinai (Miriam Sternin)', 'Moraweck, Dr. Ernest',
'Wick, Miss. Mary Natalie',
'Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)',
'Dennis, Mr. Samuel', 'Danoff, Mr. Yoto',
'Slayter, Miss. Hilda Mary',
'Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)',
'Sage, Mr. George John Jr', 'Young, Miss. Marie Grice',
'Nysveen, Mr. Johan Hansen', 'Ball, Mrs. (Ada E Hall)',
'Goldsmith, Mrs. Frank John (Emily Alice Brown)',
'Hippach, Miss. Jean Gertrude', 'McCoy, Miss. Agnes',
'Partner, Mr. Austen', 'Graham, Mr. George Edward',
'Vander Planke, Mr. Leo Edmondus',
'Frauenthal, Mrs. Henry William (Clara Heinsheimer)',
'Denkoff, Mr. Mitto', 'Pears, Mr. Thomas Clinton',
'Burns, Miss. Elizabeth Margaret', 'Dahl, Mr. Karl Edwart',
'Blackwell, Mr. Stephen Weart', 'Navratil, Master. Edmond Roger',
'Fortune, Miss. Alice Elizabeth', 'Collander, Mr. Erik Gustaf',
'Sedgwick, Mr. Charles Frederick Waddington',
'Fox, Mr. Stanley Hubert', 'Brown, Miss. Amelia "Mildred"',
'Smith, Miss. Marion Elsie',
'Davison, Mrs. Thomas Henry (Mary E Finck)',
'Coutts, Master. William Loch "William"', 'Dimic, Mr. Jovan',
'Odahl, Mr. Nils Martin', 'Williams-Lambert, Mr. Fletcher Fellows',
'Elias, Mr. Tannous', 'Arnold-Franchi, Mr. Josef',
'Yousif, Mr. Wazli', 'Vanden Steen, Mr. Leo Peter',
'Bowerman, Miss. Elsie Edith', 'Funk, Miss. Annie Clemmer',
'McGovern, Miss. Mary', 'Mockler, Miss. Helen Mary "Ellie"',
'Skoog, Mr. Wilhelm', 'del Carlo, Mr. Sebastiano',
'Barbara, Mrs. (Catherine David)', 'Asim, Mr. Adola',
"O'Brien, Mr. Thomas", 'Adahl, Mr. Mauritz Nils Martin',
'Warren, Mrs. Frank Manley (Anna Sophia Atkinson)',
'Moussa, Mrs. (Mantoura Boulos)', 'Jermyn, Miss. Annie',
'Aubart, Mme. Leontine Pauline', 'Harder, Mr. George Achilles',
'Wiklund, Mr. Jakob Alfred', 'Beavan, Mr. William Thomas',
'Ringhini, Mr. Sante', 'Palsson, Miss. Stina Viola',
'Meyer, Mrs. Edgar Joseph (Leila Saks)',
'Landergren, Miss. Aurora Adelia', 'Widener, Mr. Harry Elkins',
'Betros, Mr. Tannous', 'Gustafsson, Mr. Karl Gideon',
'Bidois, Miss. Rosalie', 'Nakid, Miss. Maria ("Mary")',
'Tikkanen, Mr. Juho',
'Holverson, Mrs. Alexander Oskar (Mary Aline Towner)',
'Plotcharsky, Mr. Vasil', 'Davies, Mr. Charles Henry',
'Goodwin, Master. Sidney Leonard', 'Buss, Miss. Kate',
'Sadlier, Mr. Matthew', 'Lehmann, Miss. Bertha',
'Carter, Mr. William Ernest', 'Jansson, Mr. Carl Olof',
'Gustafsson, Mr. Johan Birger', 'Newell, Miss. Marjorie',
'Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)',
'Johansson, Mr. Erik', 'Olsson, Miss. Elina',
'McKane, Mr. Peter David', 'Pain, Dr. Alfred',
'Trout, Mrs. William H (Jessie L)', 'Niskanen, Mr. Juha',
'Adams, Mr. John', 'Jussila, Miss. Mari Aina',
'Hakkarainen, Mr. Pekka Pietari', 'Oreskovic, Miss. Marija',
'Gale, Mr. Shadrach', 'Widegren, Mr. Carl/Charles Peter',
'Richards, Master. William Rowe',
'Birkeland, Mr. Hans Martin Monsen', 'Lefebre, Miss. Ida',
'Sdycoff, Mr. Todor', 'Hart, Mr. Henry', 'Minahan, Miss. Daisy E',
'Cunningham, Mr. Alfred Fleming', 'Sundman, Mr. Johan Julian',
'Meek, Mrs. Thomas (Annie Louise Rowley)',
'Drew, Mrs. James Vivian (Lulu Thorne Christian)',
'Silven, Miss. Lyyli Karoliina', 'Matthews, Mr. William John',
'Van Impe, Miss. Catharina', 'Gheorgheff, Mr. Stanio',
'Charters, Mr. David', 'Zimmerman, Mr. Leo',
'Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)',
'Rosblom, Mr. Viktor Richard', 'Wiseman, Mr. Phillippe',
'Clarke, Mrs. Charles V (Ada Maria Winfield)',
'Phillips, Miss. Kate Florence ("Mrs Kate Louise Phillips Marshall")',
'Flynn, Mr. James', 'Pickard, Mr. Berk (Berk Trembisky)',
'Bjornstrom-Steffansson, Mr. Mauritz Hakan',
'Thorneycroft, Mrs. Percival (Florence Kate White)',
'Louch, Mrs. Charles Alexander (Alice Adelaide Slow)',
'Kallio, Mr. Nikolai Erland', 'Silvey, Mr. William Baird',
'Carter, Miss. Lucile Polk',
'Ford, Miss. Doolina Margaret "Daisy"',
'Richards, Mrs. Sidney (Emily Hocking)', 'Fortune, Mr. Mark',
'Kvillner, Mr. Johan Henrik Johannesson',
'Hart, Mrs. Benjamin (Esther Ada Bloomfield)', 'Hampe, Mr. Leon',
'Petterson, Mr. Johan Emil', 'Reynaldo, Ms. Encarnacion',
'Johannesen-Bratthammer, Mr. Bernt', 'Dodge, Master. Washington',
'Mellinger, Miss. Madeleine Violet', 'Seward, Mr. Frederic Kimber',
'Baclini, Miss. Marie Catherine', 'Peuchen, Major. Arthur Godfrey',
'West, Mr. Edwy Arthur', 'Hagland, Mr. Ingvald Olai Olsen',
'Foreman, Mr. Benjamin Laventall', 'Goldenberg, Mr. Samuel L',
'Peduzzi, Mr. Joseph', 'Jalsevac, Mr. Ivan',
'Millet, Mr. Francis Davis', 'Kenyon, Mrs. Frederick R (Marion)',
'Toomey, Miss. Ellen', "O'Connor, Mr. Maurice",
'Anderson, Mr. Harry', 'Morley, Mr. William', 'Gee, Mr. Arthur H',
'Milling, Mr. Jacob Christian', 'Maisner, Mr. Simon',
'Goncalves, Mr. Manuel Estanslas', 'Campbell, Mr. William',
'Smart, Mr. John Montgomery', 'Scanlan, Mr. James',
'Baclini, Miss. Helene Barbara', 'Keefe, Mr. Arthur',
'Cacic, Mr. Luka', 'West, Mrs. Edwy Arthur (Ada Mary Worth)',
'Jerwan, Mrs. Amin S (Marie Marthe Thuillard)',
'Strandberg, Miss. Ida Sofia', 'Clifford, Mr. George Quincy',
'Renouf, Mr. Peter Henry', 'Braund, Mr. Lewis Richard',
'Karlsson, Mr. Nils August', 'Hirvonen, Miss. Hildur E',
'Goodwin, Master. Harold Victor',
'Frost, Mr. Anthony Wood "Archie"', 'Rouse, Mr. Richard Henry',
'Turkula, Mrs. (Hedwig)', 'Bishop, Mr. Dickinson H',
'Lefebre, Miss. Jeannie',
'Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)',
'Kent, Mr. Edward Austin', 'Somerton, Mr. Francis William',
'Coutts, Master. Eden Leslie "Neville"',
'Hagland, Mr. Konrad Mathias Reiersen', 'Windelov, Mr. Einar',
'Molson, Mr. Harry Markland', 'Artagaveytia, Mr. Ramon',
'Stanley, Mr. Edward Roland', 'Yousseff, Mr. Gerious',
'Eustis, Miss. Elizabeth Mussey',
'Shellard, Mr. Frederick William',
'Allison, Mrs. Hudson J C (Bessie Waldo Daniels)',
'Svensson, Mr. Olof', 'Calic, Mr. Petar', 'Canavan, Miss. Mary',
"O'Sullivan, Miss. Bridget Mary", 'Laitinen, Miss. Kristina Sofia',
'Maioni, Miss. Roberta',
'Penasco y Castellana, Mr. Victor de Satode',
'Quick, Mrs. Frederick Charles (Jane Richards)',
'Bradley, Mr. George ("George Arthur Brayton")',
'Olsen, Mr. Henry Margido', 'Lang, Mr. Fang',
'Daly, Mr. Eugene Patrick', 'Webber, Mr. James',
'McGough, Mr. James Robert',
'Rothschild, Mrs. Martin (Elizabeth L. Barrett)',
'Coleff, Mr. Satio', 'Walker, Mr. William Anderson',
'Lemore, Mrs. (Amelia Milley)', 'Ryan, Mr. Patrick',
'Angle, Mrs. William A (Florence "Mary" Agnes Hughes)',
'Pavlovic, Mr. Stefo', 'Perreault, Miss. Anne', 'Vovk, Mr. Janko',
'Lahoud, Mr. Sarkis',
'Hippach, Mrs. Louis Albert (Ida Sophia Fischer)',
'Kassem, Mr. Fared', 'Farrell, Mr. James', 'Ridsdale, Miss. Lucy',
'Farthing, Mr. John', 'Salonen, Mr. Johan Werner',
'Hocking, Mr. Richard George', 'Quick, Miss. Phyllis May',
'Toufik, Mr. Nakli', 'Elias, Mr. Joseph Jr',
'Peter, Mrs. Catherine (Catherine Rizk)', 'Cacic, Miss. Marija',
'Hart, Miss. Eva Miriam', 'Butt, Major. Archibald Willingham',
'LeRoy, Miss. Bertha', 'Risien, Mr. Samuel Beard',
'Frolicher, Miss. Hedwig Margaritha', 'Crosby, Miss. Harriet R',
'Andersson, Miss. Ingeborg Constanzia',
'Andersson, Miss. Sigrid Elisabeth', 'Beane, Mr. Edward',
'Douglas, Mr. Walter Donald', 'Nicholson, Mr. Arthur Ernest',
'Beane, Mrs. Edward (Ethel Clarke)', 'Padro y Manent, Mr. Julian',
'Goldsmith, Mr. Frank John', 'Davies, Master. John Morgan Jr',
'Thayer, Mr. John Borland Jr', 'Sharp, Mr. Percival James R',
"O'Brien, Mr. Timothy", 'Leeni, Mr. Fahim ("Philip Zenni")',
'Ohman, Miss. Velin', 'Wright, Mr. George',
'Duff Gordon, Lady. (Lucille Christiana Sutherland) ("Mrs Morgan")',
'Robbins, Mr. Victor', 'Taussig, Mrs. Emil (Tillie Mandelbaum)',
'de Messemaeker, Mrs. Guillaume Joseph (Emma)',
'Morrow, Mr. Thomas Rowan', 'Sivic, Mr. Husein',
'Norman, Mr. Robert Douglas', 'Simmons, Mr. John',
'Meanwell, Miss. (Marion Ogden)', 'Davies, Mr. Alfred J',
'Stoytcheff, Mr. Ilia',
'Palsson, Mrs. Nils (Alma Cornelia Berglund)',
'Doharr, Mr. Tannous', 'Jonsson, Mr. Carl', 'Harris, Mr. George',
'Appleton, Mrs. Edward Dale (Charlotte Lamson)',
'Flynn, Mr. John Irwin ("Irving")', 'Kelly, Miss. Mary',
'Rush, Mr. Alfred George John', 'Patchett, Mr. George',
'Garside, Miss. Ethel',
'Silvey, Mrs. William Baird (Alice Munger)',
'Caram, Mrs. Joseph (Maria Elias)', 'Jussila, Mr. Eiriik',
'Christy, Miss. Julie Rachel',
'Thayer, Mrs. John Borland (Marian Longstreth Morris)',
'Downton, Mr. William James', 'Ross, Mr. John Hugo',
'Paulner, Mr. Uscher', 'Taussig, Miss. Ruth',
'Jarvis, Mr. John Denzil', 'Frolicher-Stehli, Mr. Maxmillian',
'Gilinski, Mr. Eliezer', 'Murdlin, Mr. Joseph',
'Rintamaki, Mr. Matti',
'Stephenson, Mrs. Walter Bertram (Martha Eustis)',
'Elsbury, Mr. William James', 'Bourke, Miss. Mary',
'Chapman, Mr. John Henry', 'Van Impe, Mr. Jean Baptiste',
'Leitch, Miss. Jessie Wills', 'Johnson, Mr. Alfred',
'Boulos, Mr. Hanna',
'Duff Gordon, Sir. Cosmo Edmund ("Mr Morgan")',
'Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)',
'Slabenoff, Mr. Petco', 'Harrington, Mr. Charles H',
'Torber, Mr. Ernst William', 'Homer, Mr. Harry ("Mr E Haven")',
'Lindell, Mr. Edvard Bengtsson', 'Karaic, Mr. Milan',
'Daniel, Mr. Robert Williams',
'Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)',
'Shutes, Miss. Elizabeth W',
'Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)',
'Jardin, Mr. Jose Neto', 'Murphy, Miss. Margaret Jane',
'Horgan, Mr. John', 'Brocklebank, Mr. William Alfred',
'Herman, Miss. Alice', 'Danbom, Mr. Ernst Gilbert',
'Lobb, Mrs. William Arthur (Cordelia K Stanlick)',
'Becker, Miss. Marion Louise', 'Gavey, Mr. Lawrence',
'Yasbeck, Mr. Antoni', 'Kimball, Mr. Edwin Nelson Jr',
'Nakid, Mr. Sahid', 'Hansen, Mr. Henry Damsgaard',
'Bowen, Mr. David John "Dai"', 'Sutton, Mr. Frederick',
'Kirkland, Rev. Charles Leonard', 'Longley, Miss. Gretchen Fiske',
'Bostandyeff, Mr. Guentcho', "O'Connell, Mr. Patrick D",
'Barkworth, Mr. Algernon Henry Wilson',
'Lundahl, Mr. Johan Svensson', 'Stahelin-Maeglin, Dr. Max',
'Parr, Mr. William Henry Marsh', 'Skoog, Miss. Mabel',
'Davis, Miss. Mary', 'Leinonen, Mr. Antti Gustaf',
'Collyer, Mr. Harvey', 'Panula, Mrs. Juha (Maria Emilia Ojala)',
'Thorneycroft, Mr. Percival', 'Jensen, Mr. Hans Peder',
'Sagesser, Mlle. Emma', 'Skoog, Miss. Margit Elizabeth',
'Foo, Mr. Choong', 'Baclini, Miss. Eugenie',
'Harper, Mr. Henry Sleeper', 'Cor, Mr. Liudevit',
'Simonius-Blumer, Col. Oberst Alfons', 'Willey, Mr. Edward',
'Stanley, Miss. Amy Zillah Elsie', 'Mitkoff, Mr. Mito',
'Doling, Miss. Elsie', 'Kalvik, Mr. Johannes Halvorsen',
'O\'Leary, Miss. Hanora "Norah"', 'Hegarty, Miss. Hanora "Nora"',
'Hickman, Mr. Leonard Mark', 'Radeff, Mr. Alexander',
'Bourke, Mrs. John (Catherine)', 'Eitemiller, Mr. George Floyd',
'Newell, Mr. Arthur Webster', 'Frauenthal, Dr. Henry William',
'Badt, Mr. Mohamed', 'Colley, Mr. Edward Pomeroy',
'Coleff, Mr. Peju', 'Lindqvist, Mr. Eino William',
'Hickman, Mr. Lewis', 'Butler, Mr. Reginald Fenton',
'Rommetvedt, Mr. Knud Paust', 'Cook, Mr. Jacob',
'Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)',
'Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)',
'Davidson, Mr. Thornton', 'Mitchell, Mr. Henry Michael',
'Wilhelms, Mr. Charles', 'Watson, Mr. Ennis Hastings',
'Edvardsson, Mr. Gustaf Hjalmar', 'Sawyer, Mr. Frederick Charles',
'Turja, Miss. Anna Sofia',
'Goodwin, Mrs. Frederick (Augusta Tyler)',
'Cardeza, Mr. Thomas Drake Martinez', 'Peters, Miss. Katie',
'Hassab, Mr. Hammad', 'Olsvigen, Mr. Thor Anderson',
'Goodwin, Mr. Charles Edward', 'Brown, Mr. Thomas William Solomon',
'Laroche, Mr. Joseph Philippe Lemercier',
'Panula, Mr. Jaako Arnold', 'Dakic, Mr. Branko',
'Fischer, Mr. Eberhard Thelander',
'Madill, Miss. Georgette Alexandra', 'Dick, Mr. Albert Adrian',
'Karun, Miss. Manca', 'Lam, Mr. Ali', 'Saad, Mr. Khalil',
'Weir, Col. John', 'Chapman, Mr. Charles Henry',
'Kelly, Mr. James', 'Mullens, Miss. Katherine "Katie"',
'Thayer, Mr. John Borland',
'Humblen, Mr. Adolf Mathias Nicolai Olsen',
'Astor, Mrs. John Jacob (Madeleine Talmadge Force)',
'Silverthorne, Mr. Spencer Victor', 'Barbara, Miss. Saiide',
'Gallagher, Mr. Martin', 'Hansen, Mr. Henrik Juul',
'Morley, Mr. Henry Samuel ("Mr Henry Marshall")',
'Kelly, Mrs. Florence "Fannie"',
'Calderhead, Mr. Edward Pennington', 'Cleaver, Miss. Alice',
'Moubarek, Master. Halim Gonios ("William George")',
'Mayne, Mlle. Berthe Antonine ("Mrs de Villiers")',
'Klaber, Mr. Herman', 'Taylor, Mr. Elmer Zebley',
'Larsson, Mr. August Viktor', 'Greenberg, Mr. Samuel',
'Soholt, Mr. Peter Andreas Lauritz Andersen',
'Endres, Miss. Caroline Louise',
'Troutt, Miss. Edwina Celia "Winnie"', 'McEvoy, Mr. Michael',
'Johnson, Mr. Malkolm Joackim',
'Harper, Miss. Annie Jessie "Nina"', 'Jensen, Mr. Svend Lauritz',
'Gillespie, Mr. William Henry', 'Hodges, Mr. Henry Price',
'Chambers, Mr. Norman Campbell', 'Oreskovic, Mr. Luka',
'Renouf, Mrs. Peter Henry (Lillian Jefferys)',
'Mannion, Miss. Margareth', 'Bryhl, Mr. Kurt Arnold Gottfrid',
'Ilmakangas, Miss. Pieta Sofia', 'Allen, Miss. Elisabeth Walton',
'Hassan, Mr. Houssein G N', 'Knight, Mr. Robert J',
'Berriman, Mr. William John', 'Troupiansky, Mr. Moses Aaron',
'Williams, Mr. Leslie', 'Ford, Mrs. Edward (Margaret Ann Watson)',
'Lesurer, Mr. Gustave J', 'Ivanoff, Mr. Kanio',
'Nankoff, Mr. Minko', 'Hawksford, Mr. Walter James',
'Cavendish, Mr. Tyrell William',
'Ryerson, Miss. Susan Parker "Suzette"', 'McNamee, Mr. Neal',
'Stranden, Mr. Juho', 'Crosby, Capt. Edward Gifford',
'Abbott, Mr. Rossmore Edward', 'Sinkkonen, Miss. Anna',
'Marvin, Mr. Daniel Warner', 'Connaghton, Mr. Michael',
'Wells, Miss. Joan', 'Moor, Master. Meier',
'Vande Velde, Mr. Johannes Joseph', 'Jonkoff, Mr. Lalio',
'Herman, Mrs. Samuel (Jane Laver)', 'Hamalainen, Master. Viljo',
'Carlsson, Mr. August Sigfrid', 'Bailey, Mr. Percy Andrew',
'Theobald, Mr. Thomas Leonard',
'Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)',
'Garfirth, Mr. John', 'Nirva, Mr. Iisakki Antino Aijo',
'Barah, Mr. Hanna Assi',
'Carter, Mrs. William Ernest (Lucile Polk)',
'Eklund, Mr. Hans Linus', 'Hogeboom, Mrs. John C (Anna Andrews)',
'Brewe, Dr. Arthur Jackson', 'Mangan, Miss. Mary',
'Moran, Mr. Daniel J', 'Gronnestad, Mr. Daniel Danielsen',
'Lievens, Mr. Rene Aime', 'Jensen, Mr. Niels Peder',
'Mack, Mrs. (Mary)', 'Elias, Mr. Dibo',
'Hocking, Mrs. Elizabeth (Eliza Needs)',
'Myhrman, Mr. Pehr Fabian Oliver Malkolm', 'Tobin, Mr. Roger',
'Emanuel, Miss. Virginia Ethel', 'Kilgannon, Mr. Thomas J',
'Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)',
'Ayoub, Miss. Banoura',
'Dick, Mrs. Albert Adrian (Vera Gillespie)',
'Long, Mr. Milton Clyde', 'Johnston, Mr. Andrew G',
'Ali, Mr. William', 'Harmer, Mr. Abraham (David Lishin)',
'Sjoblom, Miss. Anna Sofia', 'Rice, Master. George Hugh',
'Dean, Master. Bertram Vere', 'Guggenheim, Mr. Benjamin',
'Keane, Mr. Andrew "Andy"', 'Gaskell, Mr. Alfred',
'Sage, Miss. Stella Anna', 'Hoyt, Mr. William Fisher',
'Dantcheff, Mr. Ristiu', 'Otter, Mr. Richard',
'Leader, Dr. Alice (Farnham)', 'Osman, Mrs. Mara',
'Ibrahim Shawah, Mr. Yousseff',
'Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)',
'Ponesell, Mr. Martin',
'Collyer, Mrs. Harvey (Charlotte Annie Tate)',
'Carter, Master. William Thornton II',
'Thomas, Master. Assad Alexander', 'Hedman, Mr. Oskar Arvid',
'Johansson, Mr. Karl Johan', 'Andrews, Mr. Thomas Jr',
'Pettersson, Miss. Ellen Natalia', 'Meyer, Mr. August',
'Chambers, Mrs. Norman Campbell (Bertha Griggs)',
'Alexander, Mr. William', 'Lester, Mr. James',
'Slemen, Mr. Richard James', 'Andersson, Miss. Ebba Iris Alfrida',
'Tomlin, Mr. Ernest Portage', 'Fry, Mr. Richard',
'Heininen, Miss. Wendla Maria', 'Mallet, Mr. Albert',
'Holm, Mr. John Fredrik Alexander', 'Skoog, Master. Karl Thorsten',
'Hays, Mrs. Charles Melville (Clara Jennings Gregg)',
'Lulic, Mr. Nikola', 'Reuchlin, Jonkheer. John George',
'Moor, Mrs. (Beila)', 'Panula, Master. Urho Abraham',
'Flynn, Mr. John', 'Lam, Mr. Len', 'Mallet, Master. Andre',
'McCormack, Mr. Thomas Joseph',
'Stone, Mrs. George Nelson (Martha Evelyn)',
'Yasbeck, Mrs. Antoni (Selini Alexander)',
'Richards, Master. George Sibley', 'Saad, Mr. Amin',
'Augustsson, Mr. Albert', 'Allum, Mr. Owen George',
'Compton, Miss. Sara Rebecca', 'Pasic, Mr. Jakob',
'Sirota, Mr. Maurice', 'Chip, Mr. Chang', 'Marechal, Mr. Pierre',
'Alhomaki, Mr. Ilmari Rudolf', 'Mudd, Mr. Thomas Charles',
'Serepeca, Miss. Augusta', 'Lemberopolous, Mr. Peter L',
'Culumovic, Mr. Jeso', 'Abbing, Mr. Anthony',
'Sage, Mr. Douglas Bullen', 'Markoff, Mr. Marin',
'Harper, Rev. John',
'Goldenberg, Mrs. Samuel L (Edwiga Grabowska)',
'Andersson, Master. Sigvard Harald Elias', 'Svensson, Mr. Johan',
'Boulos, Miss. Nourelain', 'Lines, Miss. Mary Conover',
'Carter, Mrs. Ernest Courtenay (Lilian Hughes)',
'Aks, Mrs. Sam (Leah Rosen)',
'Wick, Mrs. George Dennick (Mary Hitchcock)',
'Daly, Mr. Peter Denis ', 'Baclini, Mrs. Solomon (Latifa Qurban)',
'Razi, Mr. Raihed', 'Hansen, Mr. Claus Peter',
'Giles, Mr. Frederick Edward',
'Swift, Mrs. Frederick Joel (Margaret Welles Barron)',
'Sage, Miss. Dorothy Edith "Dolly"', 'Gill, Mr. John William',
'Bystrom, Mrs. (Karolina)', 'Duran y More, Miss. Asuncion',
'Roebling, Mr. Washington Augustus II',
'van Melkebeke, Mr. Philemon', 'Johnson, Master. Harold Theodor',
'Balkic, Mr. Cerin',
'Beckwith, Mrs. Richard Leonard (Sallie Monypeny)',
'Carlsson, Mr. Frans Olof', 'Vander Cruyssen, Mr. Victor',
'Abelson, Mrs. Samuel (Hannah Wizosky)',
'Najib, Miss. Adele Kiamie "Jane"',
'Gustafsson, Mr. Alfred Ossian', 'Petroff, Mr. Nedelio',
'Laleff, Mr. Kristo',
'Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)',
'Shelley, Mrs. William (Imanita Parrish Hall)',
'Markun, Mr. Johann', 'Dahlberg, Miss. Gerda Ulrika',
'Banfield, Mr. Frederick James', 'Sutehall, Mr. Henry Jr',
'Rice, Mrs. William (Margaret Norton)', 'Montvila, Rev. Juozas',
'Graham, Miss. Margaret Edith',
'Johnston, Miss. Catherine Helen "Carrie"',
'Behr, Mr. Karl Howell', 'Dooley, Mr. Patrick'], dtype=object)
Extract the Titles from the name.
train_df['Title']=train_df['Name'].apply(lambda x: x.split(',')[1].split('.')[0].strip())
test_df['Title']=test_df['Name'].apply(lambda x: x.split(',')[1].split('.')[0].strip())
train_df.head(4)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Title
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S Mr
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C Mrs
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S Miss
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S Mrs
test_df.head(4)
PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Title
0 892 3 Kelly, Mr. James male 34.5 0 0 330911 7.2500 NaN Q Mr
1 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0 1 0 363272 71.2833 NaN S Mrs
2 894 2 Myles, Mr. Thomas Francis male 62.0 0 0 240276 7.9250 NaN Q Mr
3 895 3 Wirz, Mr. Albert male 27.0 0 0 315154 53.1000 NaN S Mr
train_df['Title'].value_counts().to_frame()
count
Title
Mr 517
Miss 182
Mrs 125
Master 40
Dr 7
Rev 6
Mlle 2
Major 2
Col 2
the Countess 1
Capt 1
Ms 1
Sir 1
Lady 1
Mme 1
Don 1
Jonkheer 1
sns.countplot(data=train_df, x= 'Title', hue='Survived')
<Axes: xlabel='Title', ylabel='count'>
train_df.groupby(['Title', 'Sex', 'Pclass']).Survived.sum().to_frame()
Survived
Title Sex Pclass
Capt male 1 0
Col male 1 1
Don male 1 0
Dr female 1 1
male 1 2
2 0
Jonkheer male 1 0
Lady female 1 1
Major male 1 1
Master male 1 3
2 9
3 11
Miss female 1 44
2 32
3 51
Mlle female 1 2
Mme female 1 1
Mr male 1 37
2 8
3 36
Mrs female 1 41
2 37
3 21
Ms female 2 1
Rev male 2 0
Sir male 1 1
the Countess female 1 1
bar_chart_stacked(train_df, 'Title')
train_df['Title'].replace(['Mme', 'Ms', 'Lady', 'Mlle', 'the Countess', 'Dona'], 'Miss', inplace=True)
test_df['Title'].replace(['Mme', 'Ms', 'Lady', 'Mlle', 'the Countess', 'Dona'], 'Miss', inplace=True)
train_df['Title'].replace(['Major', 'Col', 'Capt', 'Don', 'Sir', 'Jonkheer'], 'Mr', inplace=True)
test_df['Title'].replace(['Major', 'Col', 'Capt', 'Don', 'Sir', 'Jonkheer'], 'Mr', inplace=True)
train_df.head(4)
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Title
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S Mr
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C Mrs
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S Miss
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S Mrs
bar_chart_stacked(train_df, 'Title')
train_df.groupby(['Title', 'Sex', 'Pclass']).Survived.sum().to_frame()
Survived
Title Sex Pclass
Dr female 1 1
male 1 2
2 0
Master male 1 3
2 9
3 11
Miss female 1 49
2 33
3 51
Mr male 1 40
2 8
3 36
Mrs female 1 41
2 37
3 21
Rev male 2 0
Observation:
As expected, female titles correspond to a higher survival rate. Surprisingly, "Master" and "Dr." titles, typically associated with males, also show a relatively high survival rate. In contrast, those with the title "Mr." face a compromised survival rate of approximately 15%. Interestingly, all six individuals with the title "Reverend" perished, possibly indicating a decision to face their fate with dignity.
Cabin and Ticket
train_df[['Cabin', 'Ticket']]
Cabin Ticket
0 NaN A/5 21171
1 C85 PC 17599
2 NaN STON/O2. 3101282
3 C123 113803
4 NaN 373450
5 NaN 330877
6 E46 17463
7 NaN 349909
8 NaN 347742
9 NaN 237736
10 G6 PP 9549
11 C103 113783
12 NaN A/5. 2151
13 NaN 347082
14 NaN 350406
15 NaN 248706
16 NaN 382652
17 NaN 244373
18 NaN 345763
19 NaN 2649
20 NaN 239865
21 D56 248698
22 NaN 330923
23 A6 113788
24 NaN 349909
25 NaN 347077
26 NaN 2631
27 C23 C25 C27 19950
28 NaN 330959
29 NaN 349216
30 NaN PC 17601
31 B78 PC 17569
32 NaN 335677
33 NaN C.A. 24579
34 NaN PC 17604
35 NaN 113789
36 NaN 2677
37 NaN A./5. 2152
38 NaN 345764
39 NaN 2651
40 NaN 7546
41 NaN 11668
42 NaN 349253
43 NaN SC/Paris 2123
44 NaN 330958
45 NaN S.C./A.4. 23567
46 NaN 370371
47 NaN 14311
48 NaN 2662
49 NaN 349237
50 NaN 3101295
51 NaN A/4. 39886
52 D33 PC 17572
53 NaN 2926
54 B30 113509
55 C52 19947
56 NaN C.A. 31026
57 NaN 2697
58 NaN C.A. 34651
59 NaN CA 2144
60 NaN 2669
61 B28 113572
62 C83 36973
63 NaN 347088
64 NaN PC 17605
65 NaN 2661
66 F33 C.A. 29395
67 NaN S.P. 3464
68 NaN 3101281
69 NaN 315151
70 NaN C.A. 33111
71 NaN CA 2144
72 NaN S.O.C. 14879
73 NaN 2680
74 NaN 1601
75 F G73 348123
76 NaN 349208
77 NaN 374746
78 NaN 248738
79 NaN 364516
80 NaN 345767
81 NaN 345779
82 NaN 330932
83 NaN 113059
84 NaN SO/C 14885
85 NaN 3101278
86 NaN W./C. 6608
87 NaN SOTON/OQ 392086
88 C23 C25 C27 19950
89 NaN 343275
90 NaN 343276
91 NaN 347466
92 E31 W.E.P. 5734
93 NaN C.A. 2315
94 NaN 364500
95 NaN 374910
96 A5 PC 17754
97 D10 D12 PC 17759
98 NaN 231919
99 NaN 244367
100 NaN 349245
101 NaN 349215
102 D26 35281
103 NaN 7540
104 NaN 3101276
105 NaN 349207
106 NaN 343120
107 NaN 312991
108 NaN 349249
109 NaN 371110
110 C110 110465
111 NaN 2665
112 NaN 324669
113 NaN 4136
114 NaN 2627
115 NaN STON/O 2. 3101294
116 NaN 370369
117 NaN 11668
118 B58 B60 PC 17558
119 NaN 347082
120 NaN S.O.C. 14879
121 NaN A4. 54510
122 NaN 237736
123 E101 27267
124 D26 35281
125 NaN 2651
126 NaN 370372
127 NaN C 17369
128 F E69 2668
129 NaN 347061
130 NaN 349241
131 NaN SOTON/O.Q. 3101307
132 NaN A/5. 3337
133 NaN 228414
134 NaN C.A. 29178
135 NaN SC/PARIS 2133
136 D47 11752
137 C123 113803
138 NaN 7534
139 B86 PC 17593
140 NaN 2678
141 NaN 347081
142 NaN STON/O2. 3101279
143 NaN 365222
144 NaN 231945
145 NaN C.A. 33112
146 NaN 350043
147 NaN W./C. 6608
148 F2 230080
149 NaN 244310
150 NaN S.O.P. 1166
151 C2 113776
152 NaN A.5. 11206
153 NaN A/5. 851
154 NaN Fa 265302
155 NaN PC 17597
156 NaN 35851
157 NaN SOTON/OQ 392090
158 NaN 315037
159 NaN CA. 2343
160 NaN 371362
161 NaN C.A. 33595
162 NaN 347068
163 NaN 315093
164 NaN 3101295
165 NaN 363291
166 E33 113505
167 NaN 347088
168 NaN PC 17318
169 NaN 1601
170 B19 111240
171 NaN 382652
172 NaN 347742
173 NaN STON/O 2. 3101280
174 A7 17764
175 NaN 350404
176 NaN 4133
177 C49 PC 17595
178 NaN 250653
179 NaN LINE
180 NaN CA. 2343
181 NaN SC/PARIS 2131
182 NaN 347077
183 F4 230136
184 NaN 315153
185 A32 113767
186 NaN 370365
187 NaN 111428
188 NaN 364849
189 NaN 349247
190 NaN 234604
191 NaN 28424
192 NaN 350046
193 F2 230080
194 B4 PC 17610
195 B80 PC 17569
196 NaN 368703
197 NaN 4579
198 NaN 370370
199 NaN 248747
200 NaN 345770
201 NaN CA. 2343
202 NaN 3101264
203 NaN 2628
204 NaN A/5 3540
205 G6 347054
206 NaN 3101278
207 NaN 2699
208 NaN 367231
209 A31 112277
210 NaN SOTON/O.Q. 3101311
211 NaN F.C.C. 13528
212 NaN A/5 21174
213 NaN 250646
214 NaN 367229
215 D36 35273
216 NaN STON/O2. 3101283
217 NaN 243847
218 D15 11813
219 NaN W/C 14208
220 NaN SOTON/OQ 392089
221 NaN 220367
222 NaN 21440
223 NaN 349234
224 C93 19943
225 NaN PP 4348
226 NaN SW/PP 751
227 NaN A/5 21173
228 NaN 236171
229 NaN 4133
230 C83 36973
231 NaN 347067
232 NaN 237442
233 NaN 347077
234 NaN C.A. 29566
235 NaN W./C. 6609
236 NaN 26707
237 NaN C.A. 31921
238 NaN 28665
239 NaN SCO/W 1585
240 NaN 2665
241 NaN 367230
242 NaN W./C. 14263
243 NaN STON/O 2. 3101275
244 NaN 2694
245 C78 19928
246 NaN 347071
247 NaN 250649
248 D35 11751
249 NaN 244252
250 NaN 362316
251 G6 347054
252 C87 113514
253 NaN A/5. 3336
254 NaN 370129
255 NaN 2650
256 NaN PC 17585
257 B77 110152
258 NaN PC 17755
259 NaN 230433
260 NaN 384461
261 NaN 347077
262 E67 110413
263 B94 112059
264 NaN 382649
265 NaN C.A. 17248
266 NaN 3101295
267 NaN 347083
268 C125 PC 17582
269 C99 PC 17760
270 NaN 113798
271 NaN LINE
272 NaN 250644
273 C118 PC 17596
274 NaN 370375
275 D7 13502
276 NaN 347073
277 NaN 239853
278 NaN 382652
279 NaN C.A. 2673
280 NaN 336439
281 NaN 347464
282 NaN 345778
283 NaN A/5. 10482
284 A19 113056
285 NaN 349239
286 NaN 345774
287 NaN 349206
288 NaN 237798
289 NaN 370373
290 NaN 19877
291 B49 11967
292 D SC/Paris 2163
293 NaN 349236
294 NaN 349233
295 NaN PC 17612
296 NaN 2693
297 C22 C26 113781
298 C106 19988
299 B58 B60 PC 17558
300 NaN 9234
301 NaN 367226
302 NaN LINE
303 E101 226593
304 NaN A/5 2466
305 C22 C26 113781
306 NaN 17421
307 C65 PC 17758
308 NaN P/PP 3381
309 E36 PC 17485
310 C54 11767
311 B57 B59 B63 B66 PC 17608
312 NaN 250651
313 NaN 349243
314 NaN F.C.C. 13529
315 NaN 347470
316 NaN 244367
317 NaN 29011
318 C7 36928
319 E34 16966
320 NaN A/5 21172
321 NaN 349219
322 NaN 234818
323 NaN 248738
324 NaN CA. 2343
325 C32 PC 17760
326 NaN 345364
327 D 28551
328 NaN 363291
329 B18 111361
330 NaN 367226
331 C124 113043
332 C91 PC 17582
333 NaN 345764
334 NaN PC 17611
335 NaN 349225
336 C2 113776
337 E40 16966
338 NaN 7598
339 T 113784
340 F2 230080
341 C23 C25 C27 19950
342 NaN 248740
343 NaN 244361
344 NaN 229236
345 F33 248733
346 NaN 31418
347 NaN 386525
348 NaN C.A. 37671
349 NaN 315088
350 NaN 7267
351 C128 113510
352 NaN 2695
353 NaN 349237
354 NaN 2647
355 NaN 345783
356 E33 113505
357 NaN 237671
358 NaN 330931
359 NaN 330980
360 NaN 347088
361 NaN SC/PARIS 2167
362 NaN 2691
363 NaN SOTON/O.Q. 3101310
364 NaN 370365
365 NaN C 7076
366 D37 110813
367 NaN 2626
368 NaN 14313
369 B35 PC 17477
370 E50 11765
371 NaN 3101267
372 NaN 323951
373 NaN PC 17760
374 NaN 349909
375 NaN PC 17604
376 NaN C 7077
377 C82 113503
378 NaN 2648
379 NaN 347069
380 NaN PC 17757
381 NaN 2653
382 NaN STON/O 2. 3101293
383 NaN 113789
384 NaN 349227
385 NaN S.O.C. 14879
386 NaN CA 2144
387 NaN 27849
388 NaN 367655
389 NaN SC 1748
390 B96 B98 113760
391 NaN 350034
392 NaN 3101277
393 D36 35273
394 G6 PP 9549
395 NaN 350052
396 NaN 350407
397 NaN 28403
398 NaN 244278
399 NaN 240929
400 NaN STON/O 2. 3101289
401 NaN 341826
402 NaN 4137
403 NaN STON/O2. 3101279
404 NaN 315096
405 NaN 28664
406 NaN 347064
407 NaN 29106
408 NaN 312992
409 NaN 4133
410 NaN 349222
411 NaN 394140
412 C78 19928
413 NaN 239853
414 NaN STON/O 2. 3101269
415 NaN 343095
416 NaN 28220
417 NaN 250652
418 NaN 28228
419 NaN 345773
420 NaN 349254
421 NaN A/5. 13032
422 NaN 315082
423 NaN 347080
424 NaN 370129
425 NaN A/4. 34244
426 NaN 2003
427 NaN 250655
428 NaN 364851
429 E10 SOTON/O.Q. 392078
430 C52 110564
431 NaN 376564
432 NaN SC/AH 3085
433 NaN STON/O 2. 3101274
434 E44 13507
435 B96 B98 113760
436 NaN W./C. 6608
437 NaN 29106
438 C23 C25 C27 19950
439 NaN C.A. 18723
440 NaN F.C.C. 13529
441 NaN 345769
442 NaN 347076
443 NaN 230434
444 NaN 65306
445 A34 33638
446 NaN 250644
447 NaN 113794
448 NaN 2666
449 C104 113786
450 NaN C.A. 34651
451 NaN 65303
452 C111 113051
453 C92 17453
454 NaN A/5 2817
455 NaN 349240
456 E38 13509
457 D21 17464
458 NaN F.C.C. 13531
459 NaN 371060
460 E12 19952
461 NaN 364506
462 E63 111320
463 NaN 234360
464 NaN A/S 2816
465 NaN SOTON/O.Q. 3101306
466 NaN 239853
467 NaN 113792
468 NaN 36209
469 NaN 2666
470 NaN 323592
471 NaN 315089
472 NaN C.A. 34651
473 D SC/AH Basle 541
474 NaN 7553
475 A14 110465
476 NaN 31027
477 NaN 3460
478 NaN 350060
479 NaN 3101298
480 NaN CA 2144
481 NaN 239854
482 NaN A/5 3594
483 NaN 4134
484 B49 11967
485 NaN 4133
486 C93 19943
487 B37 11771
488 NaN A.5. 18509
489 NaN C.A. 37671
490 NaN 65304
491 NaN SOTON/OQ 3101317
492 C30 113787
493 NaN PC 17609
494 NaN A/4 45380
495 NaN 2627
496 D20 36947
497 NaN C.A. 6212
498 C22 C26 113781
499 NaN 350035
500 NaN 315086
501 NaN 364846
502 NaN 330909
503 NaN 4135
504 B79 110152
505 C65 PC 17758
506 NaN 26360
507 NaN 111427
508 NaN C 4001
509 NaN 1601
510 NaN 382651
511 NaN SOTON/OQ 3101316
512 E25 PC 17473
513 NaN PC 17603
514 NaN 349209
515 D46 36967
516 F33 C.A. 34260
517 NaN 371110
518 NaN 226875
519 NaN 349242
520 B73 12749
521 NaN 349252
522 NaN 2624
523 B18 111361
524 NaN 2700
525 NaN 367232
526 NaN W./C. 14258
527 C95 PC 17483
528 NaN 3101296
529 NaN 29104
530 NaN 26360
531 NaN 2641
532 NaN 2690
533 NaN 2668
534 NaN 315084
535 NaN F.C.C. 13529
536 B38 113050
537 NaN PC 17761
538 NaN 364498
539 B39 13568
540 B22 WE/P 5735
541 NaN 347082
542 NaN 347082
543 NaN 2908
544 C86 PC 17761
545 NaN 693
546 NaN 2908
547 NaN SC/PARIS 2146
548 NaN 363291
549 NaN C.A. 33112
550 C70 17421
551 NaN 244358
552 NaN 330979
553 NaN 2620
554 NaN 347085
555 NaN 113807
556 A16 11755
557 NaN PC 17757
558 E67 110413
559 NaN 345572
560 NaN 372622
561 NaN 349251
562 NaN 218629
563 NaN SOTON/OQ 392082
564 NaN SOTON/O.Q. 392087
565 NaN A/4 48871
566 NaN 349205
567 NaN 349909
568 NaN 2686
569 NaN 350417
570 NaN S.W./PP 752
571 C101 11769
572 E25 PC 17474
573 NaN 14312
574 NaN A/4. 20589
575 NaN 358585
576 NaN 243880
577 E44 13507
578 NaN 2689
579 NaN STON/O 2. 3101286
580 NaN 237789
581 C68 17421
582 NaN 28403
583 A10 13049
584 NaN 3411
585 E68 110413
586 NaN 237565
587 B41 13567
588 NaN 14973
589 NaN A./5. 3235
590 NaN STON/O 2. 3101273
591 D20 36947
592 NaN A/5 3902
593 NaN 364848
594 NaN SC/AH 29037
595 NaN 345773
596 NaN 248727
597 NaN LINE
598 NaN 2664
599 A20 PC 17485
600 NaN 243847
601 NaN 349214
602 NaN 113796
603 NaN 364511
604 NaN 111426
605 NaN 349910
606 NaN 349246
607 NaN 113804
608 NaN SC/Paris 2123
609 C125 PC 17582
610 NaN 347082
611 NaN SOTON/O.Q. 3101305
612 NaN 367230
613 NaN 370377
614 NaN 364512
615 NaN 220845
616 NaN 347080
617 NaN A/5. 3336
618 F4 230136
619 NaN 31028
620 NaN 2659
621 D19 11753
622 NaN 2653
623 NaN 350029
624 NaN 54636
625 D50 36963
626 NaN 219533
627 D9 13502
628 NaN 349224
629 NaN 334912
630 A23 27042
631 NaN 347743
632 B50 13214
633 NaN 112052
634 NaN 347088
635 NaN 237668
636 NaN STON/O 2. 3101292
637 NaN C.A. 31921
638 NaN 3101295
639 NaN 376564
640 NaN 350050
641 B35 PC 17477
642 NaN 347088
643 NaN 1601
644 NaN 2666
645 D33 PC 17572
646 NaN 349231
647 A26 13213
648 NaN S.O./P.P. 751
649 NaN CA. 2314
650 NaN 349221
651 NaN 231919
652 NaN 8475
653 NaN 330919
654 NaN 365226
655 NaN S.O.C. 14879
656 NaN 349223
657 NaN 364849
658 NaN 29751
659 D48 35273
660 NaN PC 17611
661 NaN 2623
662 E58 5727
663 NaN 349210
664 NaN STON/O 2. 3101285
665 NaN S.O.C. 14879
666 NaN 234686
667 NaN 312993
668 NaN A/5 3536
669 C126 19996
670 NaN 29750
671 B71 F.C. 12750
672 NaN C.A. 24580
673 NaN 244270
674 NaN 239856
675 NaN 349912
676 NaN 342826
677 NaN 4138
678 NaN CA 2144
679 B51 B53 B55 PC 17755
680 NaN 330935
681 D49 PC 17572
682 NaN 6563
683 NaN CA 2144
684 NaN 29750
685 NaN SC/Paris 2123
686 NaN 3101295
687 NaN 349228
688 NaN 350036
689 B5 24160
690 B20 17474
691 NaN 349256
692 NaN 1601
693 NaN 2672
694 NaN 113800
695 NaN 248731
696 NaN 363592
697 NaN 35852
698 C68 17421
699 F G63 348121
700 C62 C64 PC 17757
701 E24 PC 17475
702 NaN 2691
703 NaN 36864
704 NaN 350025
705 NaN 250655
706 NaN 223596
707 E24 PC 17476
708 NaN 113781
709 NaN 2661
710 C90 PC 17482
711 C124 113028
712 C126 19996
713 NaN 7545
714 NaN 250647
715 F G73 348124
716 C45 PC 17757
717 E101 34218
718 NaN 36568
719 NaN 347062
720 NaN 248727
721 NaN 350048
722 NaN 12233
723 NaN 250643
724 E8 113806
725 NaN 315094
726 NaN 31027
727 NaN 36866
728 NaN 236853
729 NaN STON/O2. 3101271
730 B5 24160
731 NaN 2699
732 NaN 239855
733 NaN 28425
734 NaN 233639
735 NaN 54636
736 NaN W./C. 6608
737 B101 PC 17755
738 NaN 349201
739 NaN 349218
740 D45 16988
741 C46 19877
742 B57 B59 B63 B66 PC 17608
743 NaN 376566
744 NaN STON/O 2. 3101288
745 B22 WE/P 5735
746 NaN C.A. 2673
747 NaN 250648
748 D30 113773
749 NaN 335097
750 NaN 29103
751 E121 392096
752 NaN 345780
753 NaN 349204
754 NaN 220845
755 NaN 250649
756 NaN 350042
757 NaN 29108
758 NaN 363294
759 B77 110152
760 NaN 358585
761 NaN SOTON/O2 3101272
762 NaN 2663
763 B96 B98 113760
764 NaN 347074
765 D11 13502
766 NaN 112379
767 NaN 364850
768 NaN 371110
769 NaN 8471
770 NaN 345781
771 NaN 350047
772 E77 S.O./P.P. 3
773 NaN 2674
774 NaN 29105
775 NaN 347078
776 F38 383121
777 NaN 364516
778 NaN 36865
779 B3 24160
780 NaN 2687
781 B20 17474
782 D6 113501
783 NaN W./C. 6607
784 NaN SOTON/O.Q. 3101312
785 NaN 374887
786 NaN 3101265
787 NaN 382652
788 NaN C.A. 2315
789 B82 B84 PC 17593
790 NaN 12460
791 NaN 239865
792 NaN CA. 2343
793 NaN PC 17600
794 NaN 349203
795 NaN 28213
796 D17 17465
797 NaN 349244
798 NaN 2685
799 NaN 345773
800 NaN 250647
801 NaN C.A. 31921
802 B96 B98 113760
803 NaN 2625
804 NaN 347089
805 NaN 347063
806 A36 112050
807 NaN 347087
808 NaN 248723
809 E8 113806
810 NaN 3474
811 NaN A/4 48871
812 NaN 28206
813 NaN 347082
814 NaN 364499
815 B102 112058
816 NaN STON/O2. 3101290
817 NaN S.C./PARIS 2079
818 NaN C 7075
819 NaN 347088
820 B69 12749
821 NaN 315098
822 NaN 19972
823 E121 392096
824 NaN 3101295
825 NaN 368323
826 NaN 1601
827 NaN S.C./PARIS 2079
828 NaN 367228
829 B28 113572
830 NaN 2659
831 NaN 29106
832 NaN 2671
833 NaN 347468
834 NaN 2223
835 E49 PC 17756
836 NaN 315097
837 NaN 392092
838 NaN 1601
839 C47 11774
840 NaN SOTON/O2 3101287
841 NaN S.O./P.P. 3
842 NaN 113798
843 NaN 2683
844 NaN 315090
845 NaN C.A. 5547
846 NaN CA. 2343
847 NaN 349213
848 NaN 248727
849 C92 17453
850 NaN 347082
851 NaN 347060
852 NaN 2678
853 D28 PC 17592
854 NaN 244252
855 NaN 392091
856 NaN 36928
857 E17 113055
858 NaN 2666
859 NaN 2629
860 NaN 350026
861 NaN 28134
862 D17 17466
863 NaN CA. 2343
864 NaN 233866
865 NaN 236852
866 NaN SC/PARIS 2149
867 A24 PC 17590
868 NaN 345777
869 NaN 347742
870 NaN 349248
871 D35 11751
872 B51 B53 B55 695
873 NaN 345765
874 NaN P/PP 3381
875 NaN 2667
876 NaN 7534
877 NaN 349212
878 NaN 349217
879 C50 11767
880 NaN 230433
881 NaN 349257
882 NaN 7552
883 NaN C.A./SOTON 34068
884 NaN SOTON/OQ 392076
885 NaN 382652
886 NaN 211536
887 B42 112053
888 NaN W./C. 6607
889 C148 111369
890 NaN 370376
print(f" Null number: {train_df['Cabin'].isnull().sum()}")
print(f" Total number: {train_df['Cabin'].shape[0]}")
Null number: 687
Total number: 891
print(f" Null number: {train_df['Ticket'].isnull().sum()}")
print(f" Total number: {train_df['Ticket'].shape[0]}")
Null number: 0
Total number: 891
train_df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked Title
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S Mr
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C Mrs
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S Miss
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S Mrs
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S Mr
train_df.query('Cabin.notnull() and Survived==1').count()
PassengerId 136
Survived 136
Pclass 136
Name 136
Sex 136
Age 125
SibSp 136
Parch 136
Ticket 136
Fare 136
Cabin 136
Embarked 134
Title 136
dtype: int64
train_df.query('Cabin.notnull() and Survived==0').count()
PassengerId 68
Survived 68
Pclass 68
Name 68
Sex 68
Age 60
SibSp 68
Parch 68
Ticket 68
Fare 65
Cabin 68
Embarked 68
Title 68
dtype: int64
train_df.query('Cabin.isnull() and Survived==1').count()
PassengerId 206
Survived 206
Pclass 206
Name 206
Sex 206
Age 165
SibSp 206
Parch 206
Ticket 206
Fare 205
Cabin 0
Embarked 206
Title 206
dtype: int64
train_df.query('Cabin.isnull() and Survived==0').count()
PassengerId 481
Survived 481
Pclass 481
Name 481
Sex 481
Age 364
SibSp 481
Parch 481
Ticket 481
Fare 470
Cabin 0
Embarked 481
Title 481
dtype: int64
train_df['cabin_replace_num'] = train_df['Cabin'].apply(lambda x: 0 if pd.isnull(x) else 1)
test_df['cabin_replace_num'] = test_df['Cabin'].apply(lambda x: 0 if pd.isnull(x) else 1)
I think the ticket feature doesn't matter much
train_df.drop('Cabin', axis=1, inplace=True)
test_df.drop('Cabin', axis=1, inplace=True)
Feature Family Size
train_df['Fam_size'] = train_df['SibSp'] + train_df['Parch'] + 1
test_df['Fam_size'] = test_df['SibSp'] + test_df['Parch'] + 1
bar_compare(train_df, "Fam_size")
Make Family Type
# Make of four groups
train_df['Fam_type'] = pd.cut(train_df.Fam_size, [0,1,4,7,11], labels=['Solo', 'Small', 'Big', 'Very big'])
test_df['Fam_type'] = pd.cut(test_df.Fam_size, [0,1,4,7,11], labels=['Solo', 'Small', 'Big', 'Very big'])
train_df.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked Title cabin_replace_num Fam_size Fam_type
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 S Mr 0 2 Small
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C Mrs 1 2 Small
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 S Miss 0 1 Solo
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 S Mrs 1 2 Small
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 S Mr 0 1 Solo
train_df.drop(['Name', 'SibSp', 'Parch','Fam_size'], axis=1, inplace=True)
test_df.drop(['Name', 'SibSp', 'Parch','Fam_size'], axis=1, inplace=True)
train_df.head()
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
0 1 0 3 male 22.0 A/5 21171 7.2500 S Mr 0 Small
1 2 1 1 female 38.0 PC 17599 71.2833 C Mrs 1 Small
2 3 1 3 female 26.0 STON/O2. 3101282 7.9250 S Miss 0 Solo
3 4 1 1 female 35.0 113803 53.1000 S Mrs 1 Small
4 5 0 3 male 35.0 373450 8.0500 S Mr 0 Solo
print(train_df.isnull().sum())
print(test_df.isnull().sum())
PassengerId 0
Survived 0
Pclass 0
Sex 0
Age 177
Ticket 0
Fare 15
Embarked 2
Title 0
cabin_replace_num 0
Fam_type 0
dtype: int64
PassengerId 0
Pclass 0
Sex 0
Age 86
Ticket 0
Fare 6
Embarked 0
Title 0
cabin_replace_num 0
Fam_type 0
dtype: int64
total_df=pd.concat([train_df, test_df])
total_df.head()
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
0 1 0.0 3 male 22.0 A/5 21171 7.2500 S Mr 0 Small
1 2 1.0 1 female 38.0 PC 17599 71.2833 C Mrs 1 Small
2 3 1.0 3 female 26.0 STON/O2. 3101282 7.9250 S Miss 0 Solo
3 4 1.0 1 female 35.0 113803 53.1000 S Mrs 1 Small
4 5 0.0 3 male 35.0 373450 8.0500 S Mr 0 Solo
total_df['Survived'].isnull().sum()
418
total_df['Survived'].notnull().sum()
891
# Calculate the mean fare for each Pclass
mean_fare_per_class = total_df.groupby('Pclass')['Fare'].transform('mean')
total_df['Fare']=total_df['Fare'].fillna(mean_fare_per_class)
total_df.head()
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
0 1 0.0 3 male 22.0 A/5 21171 7.2500 S Mr 0 Small
1 2 1.0 1 female 38.0 PC 17599 71.2833 C Mrs 1 Small
2 3 1.0 3 female 26.0 STON/O2. 3101282 7.9250 S Miss 0 Solo
3 4 1.0 1 female 35.0 113803 53.1000 S Mrs 1 Small
4 5 0.0 3 male 35.0 373450 8.0500 S Mr 0 Solo
total_df.query('Pclass==1 and Fare.isnull()')
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
total_df.query('Pclass==2 and Fare.isnull()')
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
total_df.query('Pclass==3 and Fare.isnull()')
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
print(total_df.isnull().sum())
PassengerId 0
Survived 418
Pclass 0
Sex 0
Age 263
Ticket 0
Fare 0
Embarked 2
Title 0
cabin_replace_num 0
Fam_type 0
dtype: int64
#total_df['Embarked'] = total_df['Embarked'].fillna(total_df['Embarked'].mode())
total_df['Embarked'] = total_df['Embarked'].fillna(total_df['Embarked'].mode()[0])
total_df.query('Age.notnull() and Survived==1')
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
1 2 1.0 1 female 38.00 PC 17599 71.283300 C Mrs 1 Small
2 3 1.0 3 female 26.00 STON/O2. 3101282 7.925000 S Miss 0 Solo
3 4 1.0 1 female 35.00 113803 53.100000 S Mrs 1 Small
8 9 1.0 3 female 27.00 347742 11.133300 S Mrs 0 Small
9 10 1.0 2 female 14.00 237736 30.070800 C Mrs 0 Small
10 11 1.0 3 female 4.00 PP 9549 16.700000 S Miss 1 Small
11 12 1.0 1 female 58.00 113783 26.550000 S Miss 1 Solo
15 16 1.0 2 female 55.00 248706 16.000000 S Mrs 0 Solo
21 22 1.0 2 male 34.00 248698 13.000000 S Mr 1 Solo
22 23 1.0 3 female 15.00 330923 8.029200 Q Miss 0 Solo
23 24 1.0 1 male 28.00 113788 35.500000 S Mr 1 Solo
25 26 1.0 3 female 38.00 347077 31.387500 S Mrs 0 Big
39 40 1.0 3 female 14.00 2651 11.241700 C Miss 0 Small
43 44 1.0 2 female 3.00 SC/Paris 2123 41.579200 C Miss 0 Small
44 45 1.0 3 female 19.00 330958 7.879200 Q Miss 0 Solo
52 53 1.0 1 female 49.00 PC 17572 76.729200 C Mrs 1 Small
53 54 1.0 2 female 29.00 2926 26.000000 S Mrs 0 Small
56 57 1.0 2 female 21.00 C.A. 31026 10.500000 S Miss 0 Solo
58 59 1.0 2 female 5.00 C.A. 34651 27.750000 S Miss 0 Small
61 62 1.0 1 female 38.00 113572 80.000000 S Miss 1 Solo
66 67 1.0 2 female 29.00 C.A. 29395 10.500000 S Mrs 1 Solo
68 69 1.0 3 female 17.00 3101281 7.925000 S Miss 0 Big
74 75 1.0 3 male 32.00 1601 56.495800 S Mr 0 Solo
78 79 1.0 2 male 0.83 248738 29.000000 S Master 0 Small
79 80 1.0 3 female 30.00 364516 12.475000 S Miss 0 Solo
81 82 1.0 3 male 29.00 345779 9.500000 S Mr 0 Solo
84 85 1.0 2 female 17.00 SO/C 14885 10.500000 S Miss 0 Solo
85 86 1.0 3 female 33.00 3101278 15.850000 S Mrs 0 Small
88 89 1.0 1 female 23.00 19950 263.000000 S Miss 1 Big
97 98 1.0 1 male 23.00 PC 17759 63.358300 C Mr 1 Small
98 99 1.0 2 female 34.00 231919 23.000000 S Mrs 0 Small
106 107 1.0 3 female 21.00 343120 7.650000 S Miss 0 Solo
123 124 1.0 2 female 32.50 27267 13.000000 S Miss 1 Solo
125 126 1.0 3 male 12.00 2651 11.241700 C Master 0 Small
127 128 1.0 3 male 24.00 C 17369 7.141700 S Mr 0 Solo
133 134 1.0 2 female 29.00 228414 26.000000 S Mrs 0 Small
136 137 1.0 1 female 19.00 11752 26.283300 S Miss 1 Small
141 142 1.0 3 female 22.00 347081 7.750000 S Miss 0 Solo
142 143 1.0 3 female 24.00 STON/O2. 3101279 15.850000 S Mrs 0 Small
146 147 1.0 3 male 27.00 350043 7.795800 S Mr 0 Solo
151 152 1.0 1 female 22.00 113776 66.600000 S Mrs 1 Small
156 157 1.0 3 female 16.00 35851 7.733300 Q Miss 0 Solo
161 162 1.0 2 female 40.00 C.A. 33595 15.750000 S Mrs 0 Solo
165 166 1.0 3 male 9.00 363291 20.525000 S Master 0 Small
172 173 1.0 3 female 1.00 347742 11.133300 S Miss 0 Small
183 184 1.0 2 male 1.00 230136 39.000000 S Master 1 Small
184 185 1.0 3 female 4.00 315153 22.025000 S Miss 0 Small
187 188 1.0 1 male 45.00 111428 26.550000 S Mr 0 Solo
190 191 1.0 2 female 32.00 234604 13.000000 S Mrs 0 Solo
192 193 1.0 3 female 19.00 350046 7.854200 S Miss 0 Small
193 194 1.0 2 male 3.00 230080 26.000000 S Master 1 Small
194 195 1.0 1 female 44.00 PC 17610 27.720800 C Mrs 1 Solo
195 196 1.0 1 female 58.00 PC 17569 146.520800 C Miss 1 Solo
204 205 1.0 3 male 18.00 A/5 3540 8.050000 S Mr 0 Solo
207 208 1.0 3 male 26.00 2699 18.787500 C Mr 0 Solo
208 209 1.0 3 female 16.00 367231 7.750000 Q Miss 0 Solo
209 210 1.0 1 male 40.00 112277 31.000000 C Mr 1 Solo
211 212 1.0 2 female 35.00 F.C.C. 13528 21.000000 S Miss 0 Solo
215 216 1.0 1 female 31.00 35273 113.275000 C Miss 1 Small
216 217 1.0 3 female 27.00 STON/O2. 3101283 7.925000 S Miss 0 Solo
218 219 1.0 1 female 32.00 11813 76.291700 C Miss 1 Solo
220 221 1.0 3 male 16.00 SOTON/OQ 392089 8.050000 S Mr 0 Solo
224 225 1.0 1 male 38.00 19943 90.000000 S Mr 1 Small
226 227 1.0 2 male 19.00 SW/PP 751 10.500000 S Mr 0 Solo
230 231 1.0 1 female 35.00 36973 83.475000 S Mrs 1 Small
233 234 1.0 3 female 5.00 347077 31.387500 S Miss 0 Big
237 238 1.0 2 female 8.00 C.A. 31921 26.250000 S Miss 0 Small
247 248 1.0 2 female 24.00 250649 14.500000 S Mrs 0 Small
248 249 1.0 1 male 37.00 11751 52.554200 S Mr 1 Small
255 256 1.0 3 female 29.00 2650 15.245800 C Mrs 0 Small
257 258 1.0 1 female 30.00 110152 86.500000 S Miss 1 Solo
258 259 1.0 1 female 35.00 PC 17755 512.329200 C Miss 0 Solo
259 260 1.0 2 female 50.00 230433 26.000000 S Mrs 0 Small
261 262 1.0 3 male 3.00 347077 31.387500 S Master 0 Big
267 268 1.0 3 male 25.00 347083 7.775000 S Mr 0 Small
268 269 1.0 1 female 58.00 PC 17582 153.462500 S Mrs 1 Small
269 270 1.0 1 female 35.00 PC 17760 135.633300 S Miss 1 Solo
271 272 1.0 3 male 25.00 LINE 19.719431 S Mr 0 Solo
272 273 1.0 2 female 41.00 250644 19.500000 S Mrs 0 Small
275 276 1.0 1 female 63.00 13502 77.958300 S Miss 1 Small
279 280 1.0 3 female 35.00 C.A. 2673 20.250000 S Mrs 0 Small
283 284 1.0 3 male 19.00 A/5. 10482 8.050000 S Mr 0 Solo
286 287 1.0 3 male 30.00 345774 9.500000 S Mr 0 Solo
288 289 1.0 2 male 42.00 237798 13.000000 S Mr 0 Solo
289 290 1.0 3 female 22.00 370373 7.750000 Q Miss 0 Solo
290 291 1.0 1 female 26.00 19877 78.850000 S Miss 0 Solo
291 292 1.0 1 female 19.00 11967 91.079200 C Mrs 1 Small
299 300 1.0 1 female 50.00 PC 17558 247.520800 C Mrs 1 Small
305 306 1.0 1 male 0.92 113781 151.550000 S Master 1 Small
307 308 1.0 1 female 17.00 PC 17758 108.900000 C Mrs 1 Small
309 310 1.0 1 female 30.00 PC 17485 56.929200 C Miss 1 Solo
310 311 1.0 1 female 24.00 11767 83.158300 C Miss 1 Solo
311 312 1.0 1 female 18.00 PC 17608 262.375000 C Miss 1 Big
315 316 1.0 3 female 26.00 347470 7.854200 S Miss 0 Solo
316 317 1.0 2 female 24.00 244367 26.000000 S Mrs 0 Small
318 319 1.0 1 female 31.00 36928 164.866700 S Miss 1 Small
319 320 1.0 1 female 40.00 16966 134.500000 C Mrs 1 Small
322 323 1.0 2 female 30.00 234818 12.350000 Q Miss 0 Solo
323 324 1.0 2 female 22.00 248738 29.000000 S Mrs 0 Small
325 326 1.0 1 female 36.00 PC 17760 135.633300 C Miss 1 Solo
327 328 1.0 2 female 36.00 28551 13.000000 S Mrs 1 Solo
328 329 1.0 3 female 31.00 363291 20.525000 S Mrs 0 Small
329 330 1.0 1 female 16.00 111361 57.979200 C Miss 1 Small
337 338 1.0 1 female 41.00 16966 134.500000 C Miss 1 Solo
338 339 1.0 3 male 45.00 7598 8.050000 S Mr 0 Solo
340 341 1.0 2 male 2.00 230080 26.000000 S Master 1 Small
341 342 1.0 1 female 24.00 19950 263.000000 S Miss 1 Big
345 346 1.0 2 female 24.00 248733 13.000000 S Miss 1 Solo
346 347 1.0 2 female 40.00 31418 13.000000 S Miss 0 Solo
348 349 1.0 3 male 3.00 C.A. 37671 15.900000 S Master 0 Small
356 357 1.0 1 female 22.00 113505 55.000000 S Miss 1 Small
366 367 1.0 1 female 60.00 110813 75.250000 C Mrs 1 Small
369 370 1.0 1 female 24.00 PC 17477 69.300000 C Miss 1 Solo
370 371 1.0 1 male 25.00 11765 55.441700 C Mr 1 Small
376 377 1.0 3 female 22.00 C 7077 7.250000 S Miss 0 Solo
380 381 1.0 1 female 42.00 PC 17757 227.525000 C Miss 0 Solo
381 382 1.0 3 female 1.00 2653 15.741700 C Miss 0 Small
383 384 1.0 1 female 35.00 113789 52.000000 S Mrs 0 Small
387 388 1.0 2 female 36.00 27849 13.000000 S Miss 0 Solo
389 390 1.0 2 female 17.00 SC 1748 12.000000 C Miss 0 Solo
390 391 1.0 1 male 36.00 113760 120.000000 S Mr 1 Small
391 392 1.0 3 male 21.00 350034 7.795800 S Mr 0 Solo
393 394 1.0 1 female 23.00 35273 113.275000 C Miss 1 Small
394 395 1.0 3 female 24.00 PP 9549 16.700000 S Mrs 1 Small
399 400 1.0 2 female 28.00 240929 12.650000 S Mrs 0 Solo
400 401 1.0 3 male 39.00 STON/O 2. 3101289 7.925000 S Mr 0 Solo
407 408 1.0 2 male 3.00 29106 18.750000 S Master 0 Small
412 413 1.0 1 female 33.00 19928 90.000000 Q Miss 1 Small
414 415 1.0 3 male 44.00 STON/O 2. 3101269 7.925000 S Mr 0 Solo
416 417 1.0 2 female 34.00 28220 32.500000 S Mrs 0 Small
417 418 1.0 2 female 18.00 250652 13.000000 S Miss 0 Small
426 427 1.0 2 female 28.00 2003 26.000000 S Mrs 0 Small
427 428 1.0 2 female 19.00 250655 26.000000 S Miss 0 Solo
429 430 1.0 3 male 32.00 SOTON/O.Q. 392078 8.050000 S Mr 1 Solo
430 431 1.0 1 male 28.00 110564 26.550000 S Mr 1 Solo
432 433 1.0 2 female 42.00 SC/AH 3085 26.000000 S Mrs 0 Small
435 436 1.0 1 female 14.00 113760 120.000000 S Miss 1 Small
437 438 1.0 2 female 24.00 29106 18.750000 S Mrs 0 Big
440 441 1.0 2 female 45.00 F.C.C. 13529 26.250000 S Mrs 0 Small
443 444 1.0 2 female 28.00 230434 13.000000 S Miss 0 Solo
445 446 1.0 1 male 4.00 33638 81.858300 S Master 1 Small
446 447 1.0 2 female 13.00 250644 19.500000 S Miss 0 Small
447 448 1.0 1 male 34.00 113794 26.550000 S Mr 0 Solo
448 449 1.0 3 female 5.00 2666 19.258300 C Miss 0 Small
449 450 1.0 1 male 52.00 113786 30.500000 S Mr 1 Solo
453 454 1.0 1 male 49.00 17453 89.104200 C Mr 1 Small
455 456 1.0 3 male 29.00 349240 7.895800 C Mr 0 Solo
458 459 1.0 2 female 50.00 F.C.C. 13531 10.500000 S Miss 0 Solo
460 461 1.0 1 male 48.00 19952 26.550000 S Mr 1 Solo
469 470 1.0 3 female 0.75 2666 19.258300 C Miss 0 Small
472 473 1.0 2 female 33.00 C.A. 34651 27.750000 S Mrs 0 Small
473 474 1.0 2 female 23.00 SC/AH Basle 541 13.791700 C Mrs 1 Solo
479 480 1.0 3 female 2.00 3101298 12.287500 S Miss 0 Small
483 484 1.0 3 female 63.00 4134 9.587500 S Mrs 0 Solo
484 485 1.0 1 male 25.00 11967 91.079200 C Mr 1 Small
486 487 1.0 1 female 35.00 19943 90.000000 S Mrs 1 Small
489 490 1.0 3 male 9.00 C.A. 37671 15.900000 S Master 0 Small
496 497 1.0 1 female 54.00 36947 78.266700 C Miss 1 Small
504 505 1.0 1 female 16.00 110152 86.500000 S Miss 1 Solo
506 507 1.0 2 female 33.00 26360 26.000000 S Mrs 0 Small
509 510 1.0 3 male 26.00 1601 56.495800 S Mr 0 Solo
510 511 1.0 3 male 29.00 382651 7.750000 Q Mr 0 Solo
512 513 1.0 1 male 36.00 PC 17473 26.287500 S Mr 1 Solo
513 514 1.0 1 female 54.00 PC 17603 59.400000 C Mrs 0 Small
516 517 1.0 2 female 34.00 C.A. 34260 10.500000 S Mrs 1 Solo
518 519 1.0 2 female 36.00 226875 26.000000 S Mrs 0 Small
520 521 1.0 1 female 30.00 12749 93.500000 S Miss 1 Solo
523 524 1.0 1 female 44.00 111361 57.979200 C Mrs 1 Small
526 527 1.0 2 female 50.00 W./C. 14258 10.500000 S Miss 0 Solo
530 531 1.0 2 female 2.00 26360 26.000000 S Miss 0 Small
535 536 1.0 2 female 7.00 F.C.C. 13529 26.250000 S Miss 0 Small
537 538 1.0 1 female 30.00 PC 17761 106.425000 C Miss 0 Solo
539 540 1.0 1 female 22.00 13568 49.500000 C Miss 1 Small
540 541 1.0 1 female 36.00 WE/P 5735 71.000000 S Miss 1 Small
543 544 1.0 2 male 32.00 2908 26.000000 S Mr 0 Small
546 547 1.0 2 female 19.00 2908 26.000000 S Mrs 0 Small
549 550 1.0 2 male 8.00 C.A. 33112 36.750000 S Master 0 Small
550 551 1.0 1 male 17.00 17421 110.883300 C Mr 1 Small
553 554 1.0 3 male 22.00 2620 7.225000 C Mr 0 Solo
554 555 1.0 3 female 22.00 347085 7.775000 S Miss 0 Solo
556 557 1.0 1 female 48.00 11755 39.600000 C Miss 1 Small
558 559 1.0 1 female 39.00 110413 79.650000 S Mrs 1 Small
559 560 1.0 3 female 36.00 345572 17.400000 S Mrs 0 Small
569 570 1.0 3 male 32.00 350417 7.854200 S Mr 0 Solo
570 571 1.0 2 male 62.00 S.W./PP 752 10.500000 S Mr 0 Solo
571 572 1.0 1 female 53.00 11769 51.479200 S Mrs 1 Small
572 573 1.0 1 male 36.00 PC 17474 26.387500 S Mr 1 Solo
576 577 1.0 2 female 34.00 243880 13.000000 S Miss 0 Solo
577 578 1.0 1 female 39.00 13507 55.900000 S Mrs 1 Small
579 580 1.0 3 male 32.00 STON/O 2. 3101286 7.925000 S Mr 0 Solo
580 581 1.0 2 female 25.00 237789 30.000000 S Miss 0 Small
581 582 1.0 1 female 39.00 17421 110.883300 C Mrs 1 Small
585 586 1.0 1 female 18.00 110413 79.650000 S Miss 1 Small
587 588 1.0 1 male 60.00 13567 79.200000 C Mr 1 Small
591 592 1.0 1 female 52.00 36947 78.266700 C Mrs 1 Small
599 600 1.0 1 male 49.00 PC 17485 56.929200 C Mr 1 Small
600 601 1.0 2 female 24.00 243847 27.000000 S Mrs 0 Small
604 605 1.0 1 male 35.00 111426 26.550000 C Mr 0 Solo
607 608 1.0 1 male 27.00 113804 30.500000 S Mr 0 Solo
608 609 1.0 2 female 22.00 SC/Paris 2123 41.579200 C Mrs 0 Small
609 610 1.0 1 female 40.00 PC 17582 153.462500 S Miss 1 Solo
615 616 1.0 2 female 24.00 220845 65.000000 S Miss 0 Small
618 619 1.0 2 female 4.00 230136 39.000000 S Miss 1 Small
621 622 1.0 1 male 42.00 11753 52.554200 S Mr 1 Small
622 623 1.0 3 male 20.00 2653 15.741700 C Mr 0 Small
627 628 1.0 1 female 21.00 13502 77.958300 S Miss 1 Solo
630 631 1.0 1 male 80.00 27042 30.000000 S Mr 1 Solo
632 633 1.0 1 male 32.00 13214 30.500000 C Dr 1 Solo
635 636 1.0 2 female 28.00 237668 13.000000 S Miss 0 Solo
641 642 1.0 1 female 24.00 PC 17477 69.300000 C Miss 1 Solo
644 645 1.0 3 female 0.75 2666 19.258300 C Miss 0 Small
645 646 1.0 1 male 48.00 PC 17572 76.729200 C Mr 1 Small
647 648 1.0 1 male 56.00 13213 35.500000 C Mr 1 Solo
649 650 1.0 3 female 23.00 CA. 2314 7.550000 S Miss 0 Solo
651 652 1.0 2 female 18.00 231919 23.000000 S Miss 0 Small
660 661 1.0 1 male 50.00 PC 17611 133.650000 S Dr 0 Small
664 665 1.0 3 male 20.00 STON/O 2. 3101285 7.925000 S Mr 0 Small
670 671 1.0 2 female 40.00 29750 39.000000 S Mrs 0 Small
673 674 1.0 2 male 31.00 244270 13.000000 S Mr 0 Solo
677 678 1.0 3 female 18.00 4138 9.841700 S Miss 0 Solo
679 680 1.0 1 male 36.00 PC 17755 512.329200 C Mr 1 Small
681 682 1.0 1 male 27.00 PC 17572 76.729200 C Mr 1 Solo
689 690 1.0 1 female 15.00 24160 211.337500 S Miss 1 Small
690 691 1.0 1 male 31.00 17474 57.000000 S Mr 1 Small
691 692 1.0 3 female 4.00 349256 13.416700 C Miss 0 Small
700 701 1.0 1 female 18.00 PC 17757 227.525000 C Mrs 1 Small
701 702 1.0 1 male 35.00 PC 17475 26.287500 S Mr 1 Solo
706 707 1.0 2 female 45.00 223596 13.500000 S Mrs 0 Solo
707 708 1.0 1 male 42.00 PC 17476 26.287500 S Mr 1 Solo
708 709 1.0 1 female 22.00 113781 151.550000 S Miss 0 Solo
710 711 1.0 1 female 24.00 PC 17482 49.504200 C Miss 1 Solo
712 713 1.0 1 male 48.00 19996 52.000000 S Mr 1 Small
716 717 1.0 1 female 38.00 PC 17757 227.525000 C Miss 1 Solo
717 718 1.0 2 female 27.00 34218 10.500000 S Miss 1 Solo
720 721 1.0 2 female 6.00 248727 33.000000 S Miss 0 Small
724 725 1.0 1 male 27.00 113806 53.100000 S Mr 1 Small
726 727 1.0 2 female 30.00 31027 21.000000 S Mrs 0 Small
730 731 1.0 1 female 29.00 24160 211.337500 S Miss 1 Solo
737 738 1.0 1 male 35.00 PC 17755 512.329200 C Mr 1 Solo
742 743 1.0 1 female 21.00 PC 17608 262.375000 C Miss 1 Big
744 745 1.0 3 male 31.00 STON/O 2. 3101288 7.925000 S Mr 0 Solo
747 748 1.0 2 female 30.00 250648 13.000000 S Miss 0 Solo
750 751 1.0 2 female 4.00 29103 23.000000 S Miss 0 Small
751 752 1.0 3 male 6.00 392096 12.475000 S Master 1 Small
754 755 1.0 2 female 48.00 220845 65.000000 S Mrs 0 Small
755 756 1.0 2 male 0.67 250649 14.500000 S Master 0 Small
759 760 1.0 1 female 33.00 110152 86.500000 S Miss 1 Solo
762 763 1.0 3 male 20.00 2663 7.229200 C Mr 0 Solo
763 764 1.0 1 female 36.00 113760 120.000000 S Mrs 1 Small
765 766 1.0 1 female 51.00 13502 77.958300 S Mrs 1 Small
774 775 1.0 2 female 54.00 29105 23.000000 S Mrs 0 Big
777 778 1.0 3 female 5.00 364516 12.475000 S Miss 0 Solo
779 780 1.0 1 female 43.00 24160 211.337500 S Mrs 1 Small
780 781 1.0 3 female 13.00 2687 7.229200 C Miss 0 Solo
781 782 1.0 1 female 17.00 17474 57.000000 S Mrs 1 Small
786 787 1.0 3 female 18.00 3101265 7.495800 S Miss 0 Solo
788 789 1.0 3 male 1.00 C.A. 2315 20.575000 S Master 0 Small
796 797 1.0 1 female 49.00 17465 25.929200 S Dr 1 Solo
797 798 1.0 3 female 31.00 349244 8.683300 S Mrs 0 Solo
801 802 1.0 2 female 31.00 C.A. 31921 26.250000 S Mrs 0 Small
802 803 1.0 1 male 11.00 113760 120.000000 S Master 1 Small
803 804 1.0 3 male 0.42 2625 8.516700 C Master 0 Small
804 805 1.0 3 male 27.00 347089 6.975000 S Mr 0 Solo
809 810 1.0 1 female 33.00 113806 53.100000 S Mrs 1 Small
820 821 1.0 1 female 52.00 12749 93.500000 S Mrs 1 Small
821 822 1.0 3 male 27.00 315098 8.662500 S Mr 0 Solo
823 824 1.0 3 female 27.00 392096 12.475000 S Mrs 1 Small
827 828 1.0 2 male 1.00 S.C./PARIS 2079 37.004200 C Master 0 Small
829 830 1.0 1 female 62.00 113572 80.000000 S Mrs 1 Solo
830 831 1.0 3 female 15.00 2659 14.454200 C Mrs 0 Small
831 832 1.0 2 male 0.83 29106 18.750000 S Master 0 Small
835 836 1.0 1 female 39.00 PC 17756 83.158300 C Miss 1 Small
838 839 1.0 3 male 32.00 1601 56.495800 S Mr 0 Solo
842 843 1.0 1 female 30.00 113798 31.000000 C Miss 0 Solo
853 854 1.0 1 female 16.00 PC 17592 39.400000 S Miss 1 Small
855 856 1.0 3 female 18.00 392091 9.350000 S Mrs 0 Small
856 857 1.0 1 female 45.00 36928 164.866700 S Mrs 0 Small
857 858 1.0 1 male 51.00 113055 26.550000 S Mr 1 Solo
858 859 1.0 3 female 24.00 2666 19.258300 C Mrs 0 Small
862 863 1.0 1 female 48.00 17466 25.929200 S Mrs 1 Solo
865 866 1.0 2 female 42.00 236852 13.000000 S Mrs 0 Solo
866 867 1.0 2 female 27.00 SC/PARIS 2149 13.858300 C Miss 0 Small
869 870 1.0 3 male 4.00 347742 11.133300 S Master 0 Small
871 872 1.0 1 female 47.00 11751 52.554200 S Mrs 1 Small
874 875 1.0 2 female 28.00 P/PP 3381 24.000000 C Mrs 0 Small
875 876 1.0 3 female 15.00 2667 7.225000 C Miss 0 Solo
879 880 1.0 1 female 56.00 11767 83.158300 C Mrs 1 Small
880 881 1.0 2 female 25.00 230433 26.000000 S Mrs 0 Small
887 888 1.0 1 female 19.00 112053 30.000000 S Miss 1 Solo
889 890 1.0 1 male 26.00 111369 30.000000 C Mr 1 Solo
total_df.query('Age.notnull() and Survived==0')
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
0 1 0.0 3 male 22.0 A/5 21171 7.250000 S Mr 0 Small
4 5 0.0 3 male 35.0 373450 8.050000 S Mr 0 Solo
6 7 0.0 1 male 54.0 17463 51.862500 S Mr 1 Solo
7 8 0.0 3 male 2.0 349909 21.075000 S Master 0 Big
12 13 0.0 3 male 20.0 A/5. 2151 8.050000 S Mr 0 Solo
13 14 0.0 3 male 39.0 347082 31.275000 S Mr 0 Big
14 15 0.0 3 female 14.0 350406 7.854200 S Miss 0 Solo
16 17 0.0 3 male 2.0 382652 29.125000 Q Master 0 Big
18 19 0.0 3 female 31.0 345763 18.000000 S Mrs 0 Small
20 21 0.0 2 male 35.0 239865 26.000000 S Mr 0 Solo
24 25 0.0 3 female 8.0 349909 21.075000 S Miss 0 Big
27 28 0.0 1 male 19.0 19950 263.000000 S Mr 1 Big
30 31 0.0 1 male 40.0 PC 17601 27.720800 C Mr 0 Solo
33 34 0.0 2 male 66.0 C.A. 24579 10.500000 S Mr 0 Solo
34 35 0.0 1 male 28.0 PC 17604 82.170800 C Mr 0 Small
35 36 0.0 1 male 42.0 113789 52.000000 S Mr 0 Small
37 38 0.0 3 male 21.0 A./5. 2152 8.050000 S Mr 0 Solo
38 39 0.0 3 female 18.0 345764 18.000000 S Miss 0 Small
40 41 0.0 3 female 40.0 7546 9.475000 S Mrs 0 Small
41 42 0.0 2 female 27.0 11668 21.000000 S Mrs 0 Small
49 50 0.0 3 female 18.0 349237 17.800000 S Mrs 0 Small
50 51 0.0 3 male 7.0 3101295 39.687500 S Master 0 Big
51 52 0.0 3 male 21.0 A/4. 39886 7.800000 S Mr 0 Solo
54 55 0.0 1 male 65.0 113509 61.979200 C Mr 1 Small
57 58 0.0 3 male 28.5 2697 7.229200 C Mr 0 Solo
59 60 0.0 3 male 11.0 CA 2144 46.900000 S Master 0 Very big
60 61 0.0 3 male 22.0 2669 7.229200 C Mr 0 Solo
62 63 0.0 1 male 45.0 36973 83.475000 S Mr 1 Small
63 64 0.0 3 male 4.0 347088 27.900000 S Master 0 Big
67 68 0.0 3 male 19.0 S.P. 3464 8.158300 S Mr 0 Solo
69 70 0.0 3 male 26.0 315151 8.662500 S Mr 0 Small
70 71 0.0 2 male 32.0 C.A. 33111 10.500000 S Mr 0 Solo
71 72 0.0 3 female 16.0 CA 2144 46.900000 S Miss 0 Very big
72 73 0.0 2 male 21.0 S.O.C. 14879 73.500000 S Mr 0 Solo
73 74 0.0 3 male 26.0 2680 14.454200 C Mr 0 Small
75 76 0.0 3 male 25.0 348123 7.650000 S Mr 1 Solo
80 81 0.0 3 male 22.0 345767 9.000000 S Mr 0 Solo
83 84 0.0 1 male 28.0 113059 47.100000 S Mr 0 Solo
86 87 0.0 3 male 16.0 W./C. 6608 34.375000 S Mr 0 Big
89 90 0.0 3 male 24.0 343275 8.050000 S Mr 0 Solo
90 91 0.0 3 male 29.0 343276 8.050000 S Mr 0 Solo
91 92 0.0 3 male 20.0 347466 7.854200 S Mr 0 Solo
92 93 0.0 1 male 46.0 W.E.P. 5734 61.175000 S Mr 1 Small
93 94 0.0 3 male 26.0 C.A. 2315 20.575000 S Mr 0 Small
94 95 0.0 3 male 59.0 364500 7.250000 S Mr 0 Solo
96 97 0.0 1 male 71.0 PC 17754 34.654200 C Mr 1 Solo
99 100 0.0 2 male 34.0 244367 26.000000 S Mr 0 Small
100 101 0.0 3 female 28.0 349245 7.895800 S Miss 0 Solo
102 103 0.0 1 male 21.0 35281 77.287500 S Mr 1 Small
103 104 0.0 3 male 33.0 7540 8.654200 S Mr 0 Solo
104 105 0.0 3 male 37.0 3101276 7.925000 S Mr 0 Small
105 106 0.0 3 male 28.0 349207 7.895800 S Mr 0 Solo
108 109 0.0 3 male 38.0 349249 7.895800 S Mr 0 Solo
110 111 0.0 1 male 47.0 110465 52.000000 S Mr 1 Solo
111 112 0.0 3 female 14.5 2665 14.454200 C Miss 0 Small
112 113 0.0 3 male 22.0 324669 8.050000 S Mr 0 Solo
113 114 0.0 3 female 20.0 4136 9.825000 S Miss 0 Small
114 115 0.0 3 female 17.0 2627 14.458300 C Miss 0 Solo
115 116 0.0 3 male 21.0 STON/O 2. 3101294 7.925000 S Mr 0 Solo
116 117 0.0 3 male 70.5 370369 7.750000 Q Mr 0 Solo
117 118 0.0 2 male 29.0 11668 21.000000 S Mr 0 Small
118 119 0.0 1 male 24.0 PC 17558 247.520800 C Mr 1 Small
119 120 0.0 3 female 2.0 347082 31.275000 S Miss 0 Big
120 121 0.0 2 male 21.0 S.O.C. 14879 73.500000 S Mr 0 Small
122 123 0.0 2 male 32.5 237736 30.070800 C Mr 0 Small
124 125 0.0 1 male 54.0 35281 77.287500 S Mr 1 Small
129 130 0.0 3 male 45.0 347061 6.975000 S Mr 0 Solo
130 131 0.0 3 male 33.0 349241 7.895800 C Mr 0 Solo
131 132 0.0 3 male 20.0 SOTON/O.Q. 3101307 7.050000 S Mr 0 Solo
132 133 0.0 3 female 47.0 A/5. 3337 14.500000 S Mrs 0 Small
134 135 0.0 2 male 25.0 C.A. 29178 13.000000 S Mr 0 Solo
135 136 0.0 2 male 23.0 SC/PARIS 2133 15.045800 C Mr 0 Solo
137 138 0.0 1 male 37.0 113803 53.100000 S Mr 1 Small
138 139 0.0 3 male 16.0 7534 9.216700 S Mr 0 Solo
139 140 0.0 1 male 24.0 PC 17593 79.200000 C Mr 1 Solo
143 144 0.0 3 male 19.0 365222 6.750000 Q Mr 0 Solo
144 145 0.0 2 male 18.0 231945 11.500000 S Mr 0 Solo
145 146 0.0 2 male 19.0 C.A. 33112 36.750000 S Mr 0 Small
147 148 0.0 3 female 9.0 W./C. 6608 34.375000 S Miss 0 Big
148 149 0.0 2 male 36.5 230080 26.000000 S Mr 1 Small
149 150 0.0 2 male 42.0 244310 13.000000 S Rev 0 Solo
150 151 0.0 2 male 51.0 S.O.P. 1166 12.525000 S Rev 0 Solo
152 153 0.0 3 male 55.5 A.5. 11206 8.050000 S Mr 0 Solo
153 154 0.0 3 male 40.5 A/5. 851 14.500000 S Mr 0 Small
155 156 0.0 1 male 51.0 PC 17597 61.379200 C Mr 0 Small
157 158 0.0 3 male 30.0 SOTON/OQ 392090 8.050000 S Mr 0 Solo
160 161 0.0 3 male 44.0 371362 16.100000 S Mr 0 Small
162 163 0.0 3 male 26.0 347068 7.775000 S Mr 0 Solo
163 164 0.0 3 male 17.0 315093 8.662500 S Mr 0 Solo
164 165 0.0 3 male 1.0 3101295 39.687500 S Master 0 Big
167 168 0.0 3 female 45.0 347088 27.900000 S Mrs 0 Big
169 170 0.0 3 male 28.0 1601 56.495800 S Mr 0 Solo
170 171 0.0 1 male 61.0 111240 33.500000 S Mr 1 Solo
171 172 0.0 3 male 4.0 382652 29.125000 Q Master 0 Big
173 174 0.0 3 male 21.0 STON/O 2. 3101280 7.925000 S Mr 0 Solo
174 175 0.0 1 male 56.0 17764 30.695800 C Mr 1 Solo
175 176 0.0 3 male 18.0 350404 7.854200 S Mr 0 Small
177 178 0.0 1 female 50.0 PC 17595 28.712500 C Miss 1 Solo
178 179 0.0 2 male 30.0 250653 13.000000 S Mr 0 Solo
179 180 0.0 3 male 36.0 LINE 19.719431 S Mr 0 Solo
182 183 0.0 3 male 9.0 347077 31.387500 S Master 0 Big
188 189 0.0 3 male 40.0 364849 15.500000 Q Mr 0 Small
189 190 0.0 3 male 36.0 349247 7.895800 S Mr 0 Solo
191 192 0.0 2 male 19.0 28424 13.000000 S Mr 0 Solo
197 198 0.0 3 male 42.0 4579 8.404200 S Mr 0 Small
199 200 0.0 2 female 24.0 248747 13.000000 S Miss 0 Solo
200 201 0.0 3 male 28.0 345770 9.500000 S Mr 0 Solo
202 203 0.0 3 male 34.0 3101264 6.495800 S Mr 0 Solo
203 204 0.0 3 male 45.5 2628 7.225000 C Mr 0 Solo
205 206 0.0 3 female 2.0 347054 10.462500 S Miss 1 Small
206 207 0.0 3 male 32.0 3101278 15.850000 S Mr 0 Small
210 211 0.0 3 male 24.0 SOTON/O.Q. 3101311 7.050000 S Mr 0 Solo
212 213 0.0 3 male 22.0 A/5 21174 7.250000 S Mr 0 Solo
213 214 0.0 2 male 30.0 250646 13.000000 S Mr 0 Solo
217 218 0.0 2 male 42.0 243847 27.000000 S Mr 0 Small
219 220 0.0 2 male 30.0 W/C 14208 10.500000 S Mr 0 Solo
221 222 0.0 2 male 27.0 220367 13.000000 S Mr 0 Solo
222 223 0.0 3 male 51.0 21440 8.050000 S Mr 0 Solo
225 226 0.0 3 male 22.0 PP 4348 9.350000 S Mr 0 Solo
227 228 0.0 3 male 20.5 A/5 21173 7.250000 S Mr 0 Solo
228 229 0.0 2 male 18.0 236171 13.000000 S Mr 0 Solo
231 232 0.0 3 male 29.0 347067 7.775000 S Mr 0 Solo
232 233 0.0 2 male 59.0 237442 13.500000 S Mr 0 Solo
234 235 0.0 2 male 24.0 C.A. 29566 10.500000 S Mr 0 Solo
236 237 0.0 2 male 44.0 26707 26.000000 S Mr 0 Small
238 239 0.0 2 male 19.0 28665 10.500000 S Mr 0 Solo
239 240 0.0 2 male 33.0 SCO/W 1585 12.275000 S Mr 0 Solo
242 243 0.0 2 male 29.0 W./C. 14263 10.500000 S Mr 0 Solo
243 244 0.0 3 male 22.0 STON/O 2. 3101275 7.125000 S Mr 0 Solo
244 245 0.0 3 male 30.0 2694 7.225000 C Mr 0 Solo
245 246 0.0 1 male 44.0 19928 90.000000 Q Dr 1 Small
246 247 0.0 3 female 25.0 347071 7.775000 S Miss 0 Solo
249 250 0.0 2 male 54.0 244252 26.000000 S Rev 0 Small
251 252 0.0 3 female 29.0 347054 10.462500 S Mrs 1 Small
252 253 0.0 1 male 62.0 113514 26.550000 S Mr 1 Solo
253 254 0.0 3 male 30.0 A/5. 3336 16.100000 S Mr 0 Small
254 255 0.0 3 female 41.0 370129 20.212500 S Mrs 0 Small
262 263 0.0 1 male 52.0 110413 79.650000 S Mr 1 Small
263 264 0.0 1 male 40.0 112059 66.747620 S Mr 1 Solo
265 266 0.0 2 male 36.0 C.A. 17248 10.500000 S Mr 0 Solo
266 267 0.0 3 male 16.0 3101295 39.687500 S Mr 0 Big
273 274 0.0 1 male 37.0 PC 17596 29.700000 C Mr 1 Small
276 277 0.0 3 female 45.0 347073 7.750000 S Miss 0 Solo
278 279 0.0 3 male 7.0 382652 29.125000 Q Master 0 Big
280 281 0.0 3 male 65.0 336439 7.750000 Q Mr 0 Solo
281 282 0.0 3 male 28.0 347464 7.854200 S Mr 0 Solo
282 283 0.0 3 male 16.0 345778 9.500000 S Mr 0 Solo
285 286 0.0 3 male 33.0 349239 8.662500 C Mr 0 Solo
287 288 0.0 3 male 22.0 349206 7.895800 S Mr 0 Solo
292 293 0.0 2 male 36.0 SC/Paris 2163 12.875000 C Mr 1 Solo
293 294 0.0 3 female 24.0 349236 8.850000 S Miss 0 Solo
294 295 0.0 3 male 24.0 349233 7.895800 S Mr 0 Solo
296 297 0.0 3 male 23.5 2693 7.229200 C Mr 0 Solo
297 298 0.0 1 female 2.0 113781 151.550000 S Miss 1 Small
302 303 0.0 3 male 19.0 LINE 19.719431 S Mr 0 Solo
308 309 0.0 2 male 30.0 P/PP 3381 24.000000 C Mr 0 Small
312 313 0.0 2 female 26.0 250651 26.000000 S Mrs 0 Small
313 314 0.0 3 male 28.0 349243 7.895800 S Mr 0 Solo
314 315 0.0 2 male 43.0 F.C.C. 13529 26.250000 S Mr 0 Small
317 318 0.0 2 male 54.0 29011 14.000000 S Dr 0 Solo
320 321 0.0 3 male 22.0 A/5 21172 7.250000 S Mr 0 Solo
321 322 0.0 3 male 27.0 349219 7.895800 S Mr 0 Solo
326 327 0.0 3 male 61.0 345364 6.237500 S Mr 0 Solo
331 332 0.0 1 male 45.5 113043 28.500000 S Mr 1 Solo
332 333 0.0 1 male 38.0 PC 17582 153.462500 S Mr 1 Small
333 334 0.0 3 male 16.0 345764 18.000000 S Mr 0 Small
336 337 0.0 1 male 29.0 113776 66.600000 S Mr 1 Small
339 340 0.0 1 male 45.0 113784 35.500000 S Mr 1 Solo
342 343 0.0 2 male 28.0 248740 13.000000 S Mr 0 Solo
343 344 0.0 2 male 25.0 244361 13.000000 S Mr 0 Solo
344 345 0.0 2 male 36.0 229236 13.000000 S Mr 0 Solo
349 350 0.0 3 male 42.0 315088 8.662500 S Mr 0 Solo
350 351 0.0 3 male 23.0 7267 9.225000 S Mr 0 Solo
352 353 0.0 3 male 15.0 2695 7.229200 C Mr 0 Small
353 354 0.0 3 male 25.0 349237 17.800000 S Mr 0 Small
355 356 0.0 3 male 28.0 345783 9.500000 S Mr 0 Solo
357 358 0.0 2 female 38.0 237671 13.000000 S Miss 0 Solo
360 361 0.0 3 male 40.0 347088 27.900000 S Mr 0 Big
361 362 0.0 2 male 29.0 SC/PARIS 2167 27.720800 C Mr 0 Small
362 363 0.0 3 female 45.0 2691 14.454200 C Mrs 0 Small
363 364 0.0 3 male 35.0 SOTON/O.Q. 3101310 7.050000 S Mr 0 Solo
365 366 0.0 3 male 30.0 C 7076 7.250000 S Mr 0 Solo
371 372 0.0 3 male 18.0 3101267 6.495800 S Mr 0 Small
372 373 0.0 3 male 19.0 323951 8.050000 S Mr 0 Solo
373 374 0.0 1 male 22.0 PC 17760 135.633300 C Mr 0 Solo
374 375 0.0 3 female 3.0 349909 21.075000 S Miss 0 Big
377 378 0.0 1 male 27.0 113503 211.500000 C Mr 1 Small
378 379 0.0 3 male 20.0 2648 4.012500 C Mr 0 Solo
379 380 0.0 3 male 19.0 347069 7.775000 S Mr 0 Solo
382 383 0.0 3 male 32.0 STON/O 2. 3101293 7.925000 S Mr 0 Solo
385 386 0.0 2 male 18.0 S.O.C. 14879 73.500000 S Mr 0 Solo
386 387 0.0 3 male 1.0 CA 2144 46.900000 S Master 0 Very big
392 393 0.0 3 male 28.0 3101277 7.925000 S Mr 0 Small
395 396 0.0 3 male 22.0 350052 7.795800 S Mr 0 Solo
396 397 0.0 3 female 31.0 350407 7.854200 S Miss 0 Solo
397 398 0.0 2 male 46.0 28403 26.000000 S Mr 0 Solo
398 399 0.0 2 male 23.0 244278 10.500000 S Dr 0 Solo
401 402 0.0 3 male 26.0 341826 8.050000 S Mr 0 Solo
402 403 0.0 3 female 21.0 4137 9.825000 S Miss 0 Small
403 404 0.0 3 male 28.0 STON/O2. 3101279 15.850000 S Mr 0 Small
404 405 0.0 3 female 20.0 315096 8.662500 S Miss 0 Solo
405 406 0.0 2 male 34.0 28664 21.000000 S Mr 0 Small
406 407 0.0 3 male 51.0 347064 7.750000 S Mr 0 Solo
408 409 0.0 3 male 21.0 312992 7.775000 S Mr 0 Solo
418 419 0.0 2 male 30.0 28228 13.000000 S Mr 0 Solo
419 420 0.0 3 female 10.0 345773 24.150000 S Miss 0 Small
421 422 0.0 3 male 21.0 A/5. 13032 7.733300 Q Mr 0 Solo
422 423 0.0 3 male 29.0 315082 7.875000 S Mr 0 Solo
423 424 0.0 3 female 28.0 347080 14.400000 S Mrs 0 Small
424 425 0.0 3 male 18.0 370129 20.212500 S Mr 0 Small
433 434 0.0 3 male 17.0 STON/O 2. 3101274 7.125000 S Mr 0 Solo
434 435 0.0 1 male 50.0 13507 55.900000 S Mr 1 Small
436 437 0.0 3 female 21.0 W./C. 6608 34.375000 S Miss 0 Big
438 439 0.0 1 male 64.0 19950 263.000000 S Mr 1 Big
439 440 0.0 2 male 31.0 C.A. 18723 10.500000 S Mr 0 Solo
441 442 0.0 3 male 20.0 345769 9.500000 S Mr 0 Solo
442 443 0.0 3 male 25.0 347076 7.775000 S Mr 0 Small
450 451 0.0 2 male 36.0 C.A. 34651 27.750000 S Mr 0 Small
452 453 0.0 1 male 30.0 113051 27.750000 C Mr 1 Solo
456 457 0.0 1 male 65.0 13509 26.550000 S Mr 1 Solo
461 462 0.0 3 male 34.0 364506 8.050000 S Mr 0 Solo
462 463 0.0 1 male 47.0 111320 38.500000 S Mr 1 Solo
463 464 0.0 2 male 48.0 234360 13.000000 S Mr 0 Solo
465 466 0.0 3 male 38.0 SOTON/O.Q. 3101306 7.050000 S Mr 0 Solo
467 468 0.0 1 male 56.0 113792 26.550000 S Mr 0 Solo
471 472 0.0 3 male 38.0 315089 8.662500 S Mr 0 Solo
474 475 0.0 3 female 22.0 7553 9.837500 S Miss 0 Solo
476 477 0.0 2 male 34.0 31027 21.000000 S Mr 0 Small
477 478 0.0 3 male 29.0 3460 7.045800 S Mr 0 Small
478 479 0.0 3 male 22.0 350060 7.520800 S Mr 0 Solo
480 481 0.0 3 male 9.0 CA 2144 46.900000 S Master 0 Very big
482 483 0.0 3 male 50.0 A/5 3594 8.050000 S Mr 0 Solo
487 488 0.0 1 male 58.0 11771 29.700000 C Mr 1 Solo
488 489 0.0 3 male 30.0 A.5. 18509 8.050000 S Mr 0 Solo
491 492 0.0 3 male 21.0 SOTON/OQ 3101317 7.250000 S Mr 0 Solo
492 493 0.0 1 male 55.0 113787 30.500000 S Mr 1 Solo
493 494 0.0 1 male 71.0 PC 17609 49.504200 C Mr 0 Solo
494 495 0.0 3 male 21.0 A/4 45380 8.050000 S Mr 0 Solo
498 499 0.0 1 female 25.0 113781 151.550000 S Mrs 1 Small
499 500 0.0 3 male 24.0 350035 7.795800 S Mr 0 Solo
500 501 0.0 3 male 17.0 315086 8.662500 S Mr 0 Solo
501 502 0.0 3 female 21.0 364846 7.750000 Q Miss 0 Solo
503 504 0.0 3 female 37.0 4135 9.587500 S Miss 0 Solo
505 506 0.0 1 male 18.0 PC 17758 108.900000 C Mr 1 Small
508 509 0.0 3 male 28.0 C 4001 22.525000 S Mr 0 Solo
514 515 0.0 3 male 24.0 349209 7.495800 S Mr 0 Solo
515 516 0.0 1 male 47.0 36967 34.020800 S Mr 1 Solo
519 520 0.0 3 male 32.0 349242 7.895800 S Mr 0 Solo
521 522 0.0 3 male 22.0 349252 7.895800 S Mr 0 Solo
525 526 0.0 3 male 40.5 367232 7.750000 Q Mr 0 Solo
528 529 0.0 3 male 39.0 3101296 7.925000 S Mr 0 Solo
529 530 0.0 2 male 23.0 29104 11.500000 S Mr 0 Small
532 533 0.0 3 male 17.0 2690 7.229200 C Mr 0 Small
534 535 0.0 3 female 30.0 315084 8.662500 S Miss 0 Solo
536 537 0.0 1 male 45.0 113050 26.550000 S Mr 1 Solo
541 542 0.0 3 female 9.0 347082 31.275000 S Miss 0 Big
542 543 0.0 3 female 11.0 347082 31.275000 S Miss 0 Big
544 545 0.0 1 male 50.0 PC 17761 106.425000 C Mr 1 Small
545 546 0.0 1 male 64.0 693 26.000000 S Mr 0 Solo
548 549 0.0 3 male 33.0 363291 20.525000 S Mr 0 Small
551 552 0.0 2 male 27.0 244358 26.000000 S Mr 0 Solo
555 556 0.0 1 male 62.0 113807 26.550000 S Mr 0 Solo
561 562 0.0 3 male 40.0 349251 7.895800 S Mr 0 Solo
562 563 0.0 2 male 28.0 218629 13.500000 S Mr 0 Solo
565 566 0.0 3 male 24.0 A/4 48871 24.150000 S Mr 0 Small
566 567 0.0 3 male 19.0 349205 7.895800 S Mr 0 Solo
567 568 0.0 3 female 29.0 349909 21.075000 S Mrs 0 Big
574 575 0.0 3 male 16.0 A/4. 20589 8.050000 S Mr 0 Solo
575 576 0.0 3 male 19.0 358585 14.500000 S Mr 0 Solo
582 583 0.0 2 male 54.0 28403 26.000000 S Mr 0 Solo
583 584 0.0 1 male 36.0 13049 40.125000 C Mr 1 Solo
586 587 0.0 2 male 47.0 237565 15.000000 S Mr 0 Solo
588 589 0.0 3 male 22.0 14973 8.050000 S Mr 0 Solo
590 591 0.0 3 male 35.0 STON/O 2. 3101273 7.125000 S Mr 0 Solo
592 593 0.0 3 male 47.0 A/5 3902 7.250000 S Mr 0 Solo
594 595 0.0 2 male 37.0 SC/AH 29037 26.000000 S Mr 0 Small
595 596 0.0 3 male 36.0 345773 24.150000 S Mr 0 Small
597 598 0.0 3 male 49.0 LINE 19.719431 S Mr 0 Solo
603 604 0.0 3 male 44.0 364511 8.050000 S Mr 0 Solo
605 606 0.0 3 male 36.0 349910 15.550000 S Mr 0 Small
606 607 0.0 3 male 30.0 349246 7.895800 S Mr 0 Solo
610 611 0.0 3 female 39.0 347082 31.275000 S Mrs 0 Big
614 615 0.0 3 male 35.0 364512 8.050000 S Mr 0 Solo
616 617 0.0 3 male 34.0 347080 14.400000 S Mr 0 Small
617 618 0.0 3 female 26.0 A/5. 3336 16.100000 S Mrs 0 Small
619 620 0.0 2 male 26.0 31028 10.500000 S Mr 0 Solo
620 621 0.0 3 male 27.0 2659 14.454200 C Mr 0 Small
623 624 0.0 3 male 21.0 350029 7.854200 S Mr 0 Solo
624 625 0.0 3 male 21.0 54636 16.100000 S Mr 0 Solo
625 626 0.0 1 male 61.0 36963 32.320800 S Mr 1 Solo
626 627 0.0 2 male 57.0 219533 12.350000 Q Rev 0 Solo
628 629 0.0 3 male 26.0 349224 7.895800 S Mr 0 Solo
631 632 0.0 3 male 51.0 347743 7.054200 S Mr 0 Solo
634 635 0.0 3 female 9.0 347088 27.900000 S Miss 0 Big
636 637 0.0 3 male 32.0 STON/O 2. 3101292 7.925000 S Mr 0 Solo
637 638 0.0 2 male 31.0 C.A. 31921 26.250000 S Mr 0 Small
638 639 0.0 3 female 41.0 3101295 39.687500 S Mrs 0 Big
640 641 0.0 3 male 20.0 350050 7.854200 S Mr 0 Solo
642 643 0.0 3 female 2.0 347088 27.900000 S Miss 0 Big
646 647 0.0 3 male 19.0 349231 7.895800 S Mr 0 Solo
652 653 0.0 3 male 21.0 8475 8.433300 S Mr 0 Solo
654 655 0.0 3 female 18.0 365226 6.750000 Q Miss 0 Solo
655 656 0.0 2 male 24.0 S.O.C. 14879 73.500000 S Mr 0 Small
657 658 0.0 3 female 32.0 364849 15.500000 Q Mrs 0 Small
658 659 0.0 2 male 23.0 29751 13.000000 S Mr 0 Solo
659 660 0.0 1 male 58.0 35273 113.275000 C Mr 1 Small
661 662 0.0 3 male 40.0 2623 7.225000 C Mr 0 Solo
662 663 0.0 1 male 47.0 5727 25.587500 S Mr 1 Solo
663 664 0.0 3 male 36.0 349210 7.495800 S Mr 0 Solo
665 666 0.0 2 male 32.0 S.O.C. 14879 73.500000 S Mr 0 Small
666 667 0.0 2 male 25.0 234686 13.000000 S Mr 0 Solo
668 669 0.0 3 male 43.0 A/5 3536 8.050000 S Mr 0 Solo
671 672 0.0 1 male 31.0 F.C. 12750 52.000000 S Mr 1 Small
672 673 0.0 2 male 70.0 C.A. 24580 10.500000 S Mr 0 Solo
675 676 0.0 3 male 18.0 349912 7.775000 S Mr 0 Solo
676 677 0.0 3 male 24.5 342826 8.050000 S Mr 0 Solo
678 679 0.0 3 female 43.0 CA 2144 46.900000 S Mrs 0 Very big
682 683 0.0 3 male 20.0 6563 9.225000 S Mr 0 Solo
683 684 0.0 3 male 14.0 CA 2144 46.900000 S Mr 0 Very big
684 685 0.0 2 male 60.0 29750 39.000000 S Mr 0 Small
685 686 0.0 2 male 25.0 SC/Paris 2123 41.579200 C Mr 0 Small
686 687 0.0 3 male 14.0 3101295 39.687500 S Mr 0 Big
687 688 0.0 3 male 19.0 349228 10.170800 S Mr 0 Solo
688 689 0.0 3 male 18.0 350036 7.795800 S Mr 0 Solo
693 694 0.0 3 male 25.0 2672 7.225000 C Mr 0 Solo
694 695 0.0 1 male 60.0 113800 26.550000 S Mr 0 Solo
695 696 0.0 2 male 52.0 248731 13.500000 S Mr 0 Solo
696 697 0.0 3 male 44.0 363592 8.050000 S Mr 0 Solo
698 699 0.0 1 male 49.0 17421 110.883300 C Mr 1 Small
699 700 0.0 3 male 42.0 348121 7.650000 S Mr 1 Solo
702 703 0.0 3 female 18.0 2691 14.454200 C Miss 0 Small
703 704 0.0 3 male 25.0 36864 7.741700 Q Mr 0 Solo
704 705 0.0 3 male 26.0 350025 7.854200 S Mr 0 Small
705 706 0.0 2 male 39.0 250655 26.000000 S Mr 0 Solo
713 714 0.0 3 male 29.0 7545 9.483300 S Mr 0 Solo
714 715 0.0 2 male 52.0 250647 13.000000 S Mr 0 Solo
715 716 0.0 3 male 19.0 348124 7.650000 S Mr 1 Solo
719 720 0.0 3 male 33.0 347062 7.775000 S Mr 0 Solo
721 722 0.0 3 male 17.0 350048 7.054200 S Mr 0 Small
722 723 0.0 2 male 34.0 12233 13.000000 S Mr 0 Solo
723 724 0.0 2 male 50.0 250643 13.000000 S Mr 0 Solo
725 726 0.0 3 male 20.0 315094 8.662500 S Mr 0 Solo
728 729 0.0 2 male 25.0 236853 26.000000 S Mr 0 Small
729 730 0.0 3 female 25.0 STON/O2. 3101271 7.925000 S Miss 0 Small
731 732 0.0 3 male 11.0 2699 18.787500 C Mr 0 Solo
733 734 0.0 2 male 23.0 28425 13.000000 S Mr 0 Solo
734 735 0.0 2 male 23.0 233639 13.000000 S Mr 0 Solo
735 736 0.0 3 male 28.5 54636 16.100000 S Mr 0 Solo
736 737 0.0 3 female 48.0 W./C. 6608 34.375000 S Mrs 0 Big
741 742 0.0 1 male 36.0 19877 78.850000 S Mr 1 Small
743 744 0.0 3 male 24.0 376566 16.100000 S Mr 0 Small
745 746 0.0 1 male 70.0 WE/P 5735 71.000000 S Mr 1 Small
746 747 0.0 3 male 16.0 C.A. 2673 20.250000 S Mr 0 Small
748 749 0.0 1 male 19.0 113773 53.100000 S Mr 1 Small
749 750 0.0 3 male 31.0 335097 7.750000 Q Mr 0 Solo
752 753 0.0 3 male 33.0 345780 9.500000 S Mr 0 Solo
753 754 0.0 3 male 23.0 349204 7.895800 S Mr 0 Solo
756 757 0.0 3 male 28.0 350042 7.795800 S Mr 0 Solo
757 758 0.0 2 male 18.0 29108 11.500000 S Mr 0 Solo
758 759 0.0 3 male 34.0 363294 8.050000 S Mr 0 Solo
761 762 0.0 3 male 41.0 SOTON/O2 3101272 7.125000 S Mr 0 Solo
764 765 0.0 3 male 16.0 347074 7.775000 S Mr 0 Solo
767 768 0.0 3 female 30.5 364850 7.750000 Q Miss 0 Solo
769 770 0.0 3 male 32.0 8471 8.362500 S Mr 0 Solo
770 771 0.0 3 male 24.0 345781 9.500000 S Mr 0 Solo
771 772 0.0 3 male 48.0 350047 7.854200 S Mr 0 Solo
772 773 0.0 2 female 57.0 S.O./P.P. 3 10.500000 S Mrs 1 Solo
775 776 0.0 3 male 18.0 347078 7.750000 S Mr 0 Solo
782 783 0.0 1 male 29.0 113501 30.000000 S Mr 1 Solo
784 785 0.0 3 male 25.0 SOTON/O.Q. 3101312 7.050000 S Mr 0 Solo
785 786 0.0 3 male 25.0 374887 7.250000 S Mr 0 Solo
787 788 0.0 3 male 8.0 382652 29.125000 Q Master 0 Big
789 790 0.0 1 male 46.0 PC 17593 79.200000 C Mr 1 Solo
791 792 0.0 2 male 16.0 239865 26.000000 S Mr 0 Solo
794 795 0.0 3 male 25.0 349203 7.895800 S Mr 0 Solo
795 796 0.0 2 male 39.0 28213 13.000000 S Mr 0 Solo
798 799 0.0 3 male 30.0 2685 7.229200 C Mr 0 Solo
799 800 0.0 3 female 30.0 345773 24.150000 S Mrs 0 Small
800 801 0.0 2 male 34.0 250647 13.000000 S Mr 0 Solo
805 806 0.0 3 male 31.0 347063 7.775000 S Mr 0 Solo
806 807 0.0 1 male 39.0 112050 66.747620 S Mr 1 Solo
807 808 0.0 3 female 18.0 347087 7.775000 S Miss 0 Solo
808 809 0.0 2 male 39.0 248723 13.000000 S Mr 0 Solo
810 811 0.0 3 male 26.0 3474 7.887500 S Mr 0 Solo
811 812 0.0 3 male 39.0 A/4 48871 24.150000 S Mr 0 Solo
812 813 0.0 2 male 35.0 28206 10.500000 S Mr 0 Solo
813 814 0.0 3 female 6.0 347082 31.275000 S Miss 0 Big
814 815 0.0 3 male 30.5 364499 8.050000 S Mr 0 Solo
816 817 0.0 3 female 23.0 STON/O2. 3101290 7.925000 S Miss 0 Solo
817 818 0.0 2 male 31.0 S.C./PARIS 2079 37.004200 C Mr 0 Small
818 819 0.0 3 male 43.0 C 7075 6.450000 S Mr 0 Solo
819 820 0.0 3 male 10.0 347088 27.900000 S Master 0 Big
822 823 0.0 1 male 38.0 19972 66.747620 S Mr 0 Solo
824 825 0.0 3 male 2.0 3101295 39.687500 S Master 0 Big
833 834 0.0 3 male 23.0 347468 7.854200 S Mr 0 Solo
834 835 0.0 3 male 18.0 2223 8.300000 S Mr 0 Solo
836 837 0.0 3 male 21.0 315097 8.662500 S Mr 0 Solo
840 841 0.0 3 male 20.0 SOTON/O2 3101287 7.925000 S Mr 0 Solo
841 842 0.0 2 male 16.0 S.O./P.P. 3 10.500000 S Mr 0 Solo
843 844 0.0 3 male 34.5 2683 6.437500 C Mr 0 Solo
844 845 0.0 3 male 17.0 315090 8.662500 S Mr 0 Solo
845 846 0.0 3 male 42.0 C.A. 5547 7.550000 S Mr 0 Solo
847 848 0.0 3 male 35.0 349213 7.895800 C Mr 0 Solo
848 849 0.0 2 male 28.0 248727 33.000000 S Rev 0 Small
850 851 0.0 3 male 4.0 347082 31.275000 S Master 0 Big
851 852 0.0 3 male 74.0 347060 7.775000 S Mr 0 Solo
852 853 0.0 3 female 9.0 2678 15.245800 C Miss 0 Small
854 855 0.0 2 female 44.0 244252 26.000000 S Mrs 0 Small
860 861 0.0 3 male 41.0 350026 14.108300 S Mr 0 Small
861 862 0.0 2 male 21.0 28134 11.500000 S Mr 0 Small
864 865 0.0 2 male 24.0 233866 13.000000 S Mr 0 Solo
867 868 0.0 1 male 31.0 PC 17590 50.495800 S Mr 1 Solo
870 871 0.0 3 male 26.0 349248 7.895800 S Mr 0 Solo
872 873 0.0 1 male 33.0 695 5.000000 S Mr 1 Solo
873 874 0.0 3 male 47.0 345765 9.000000 S Mr 0 Solo
876 877 0.0 3 male 20.0 7534 9.845800 S Mr 0 Solo
877 878 0.0 3 male 19.0 349212 7.895800 S Mr 0 Solo
881 882 0.0 3 male 33.0 349257 7.895800 S Mr 0 Solo
882 883 0.0 3 female 22.0 7552 10.516700 S Miss 0 Solo
883 884 0.0 2 male 28.0 C.A./SOTON 34068 10.500000 S Mr 0 Solo
884 885 0.0 3 male 25.0 SOTON/OQ 392076 7.050000 S Mr 0 Solo
885 886 0.0 3 female 39.0 382652 29.125000 Q Mrs 0 Big
886 887 0.0 2 male 27.0 211536 13.000000 S Rev 0 Solo
890 891 0.0 3 male 32.0 370376 7.750000 Q Mr 0 Solo
total_df['Age'] = total_df['Age'].fillna(total_df['Age'].mean())
print(total_df.isnull().sum())
PassengerId 0
Survived 418
Pclass 0
Sex 0
Age 0
Ticket 0
Fare 0
Embarked 0
Title 0
cabin_replace_num 0
Fam_type 0
dtype: int64
train_dataframe=total_df.query('Survived==1 or Survived==0')
train_dataframe.head()
PassengerId Survived Pclass Sex Age Ticket Fare Embarked Title cabin_replace_num Fam_type
0 1 0.0 3 male 22.0 A/5 21171 7.2500 S Mr 0 Small
1 2 1.0 1 female 38.0 PC 17599 71.2833 C Mrs 1 Small
2 3 1.0 3 female 26.0 STON/O2. 3101282 7.9250 S Miss 0 Solo
3 4 1.0 1 female 35.0 113803 53.1000 S Mrs 1 Small
4 5 0.0 3 male 35.0 373450 8.0500 S Mr 0 Solo
train_dataframe.shape
(891, 11)
test_dataframe=total_df.query('Survived.isnull()')
test_dataframe.shape
(418, 11)
test_dataframe.drop('Survived', axis=1, inplace=True)
test_dataframe.shape
(418, 10)
print(train_dataframe.isnull().sum())
PassengerId 0
Survived 0
Pclass 0
Sex 0
Age 0
Ticket 0
Fare 0
Embarked 0
Title 0
cabin_replace_num 0
Fam_type 0
dtype: int64
train_dataframe['Sex'] = train_dataframe['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
test_dataframe['Sex'] = test_dataframe['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
train_dataframe.drop(['PassengerId','Ticket'],axis=1, inplace=True )
test_dataframe.drop(['PassengerId','Ticket'],axis=1, inplace=True )
train_dataframe.head()
Survived Pclass Sex Age Fare Embarked Title cabin_replace_num Fam_type
0 0.0 3 0 22.0 7.2500 S Mr 0 Small
1 1.0 1 1 38.0 71.2833 C Mrs 1 Small
2 1.0 3 1 26.0 7.9250 S Miss 0 Solo
3 1.0 1 1 35.0 53.1000 S Mrs 1 Small
4 0.0 3 0 35.0 8.0500 S Mr 0 Solo
test_dataframe.head()
Pclass Sex Age Fare Embarked Title cabin_replace_num Fam_type
0 3 0 34.5 7.2500 Q Mr 0 Solo
1 3 1 47.0 71.2833 S Mrs 0 Small
2 2 0 62.0 7.9250 Q Mr 0 Solo
3 3 0 27.0 53.1000 S Mr 0 Solo
4 3 1 22.0 8.0500 S Mrs 0 Small
train_dataframe.Title.value_counts()
Title
Mr 525
Miss 188
Mrs 125
Master 40
Dr 7
Rev 6
Name: count, dtype: int64
OneHotEncoding and scaling
# Define the columns for OneHotEncoding and scaling
categorical_features = ['Embarked', 'Title', 'Fam_type']
numeric_features = ['Pclass', 'Sex', 'Age', 'Fare', 'cabin_replace_num']
# Create the preprocessor using ColumnTransformer
preprocessor = ColumnTransformer(
transformers=[
('num', StandardScaler(), numeric_features),
('cat', OneHotEncoder(drop='first'), categorical_features)
])
# Apply the transformations
X = preprocessor.fit_transform(train_dataframe.drop('Survived', axis=1))
y = train_dataframe['Survived']
test_dataframe = preprocessor.transform(test_dataframe)
Models and their Parameters
# Define models and their parameters
models = {
'LogisticRegression': LogisticRegression(max_iter=1000),
'RandomForest': RandomForestClassifier(),
'GradientBoosting': GradientBoostingClassifier(),
'XGBoost': XGBClassifier(use_label_encoder=False, eval_metric='logloss'),
'SVC': SVC(),
'KNeighbors': KNeighborsClassifier()
}
params = {
'LogisticRegression': {'C': [0.1, 1, 10, 100]},
'RandomForest': {'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20]},
'GradientBoosting': {'n_estimators': [50, 100, 200], 'learning_rate': [0.01, 0.1, 0.2]},
'XGBoost': {'n_estimators': [50, 100, 200], 'learning_rate': [0.01, 0.1, 0.2]},
'SVC': {'C': [0.1, 1, 10, 100], 'kernel': ['linear', 'rbf']},
'KNeighbors': {'n_neighbors': [3, 5, 7, 9]}
}
# Initialize StratifiedKFold
kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
# Train models and find best parameters
best_models = {}
best_scores = {}
for name, model in models.items():
print(f"Training {name}...")
grid = GridSearchCV(model, params[name], cv=kf, scoring='accuracy')
grid.fit(X, y)
best_models[name] = grid.best_estimator_
best_scores[name] = grid.best_score_
print(f"Best parameters for {name}: {grid.best_params_}")
print(f"Best score for {name}: {grid.best_score_}")
Training LogisticRegression...
Best parameters for LogisticRegression: {'C': 1}
Best score for LogisticRegression: 0.8327537505492437
Training RandomForest...
Best parameters for RandomForest: {'max_depth': 10, 'n_estimators': 50}
Best score for RandomForest: 0.8350134957002071
Training GradientBoosting...
Best parameters for GradientBoosting: {'learning_rate': 0.1, 'n_estimators': 200}
Best score for GradientBoosting: 0.8473353838428223
Training XGBoost...
Best parameters for XGBoost: {'learning_rate': 0.2, 'n_estimators': 50}
Best score for XGBoost: 0.8349883874207519
Training SVC...
Best parameters for SVC: {'C': 1, 'kernel': 'rbf'}
Best score for SVC: 0.8338899001945892
Training KNeighbors...
Best parameters for KNeighbors: {'n_neighbors': 7}
Best score for KNeighbors: 0.8383780051471973
# Split the data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
# Evaluate each model
validation_scores = {}
for name, model in best_models.items():
model.fit(X_train, y_train)
y_pred = model.predict(X_val)
accuracy = accuracy_score(y_val, y_pred)
validation_scores[name] = accuracy
print(f"Evaluation of {name}:")
print(f"Accuracy: {accuracy}")
print(f"Confusion Matrix:\n{confusion_matrix(y_val, y_pred)}")
print(f"Classification Report:\n{classification_report(y_val, y_pred)}\n")
Evaluation of LogisticRegression:
Accuracy: 0.8379888268156425
Confusion Matrix:
[[97 13]
[16 53]]
Classification Report:
precision recall f1-score support
0.0 0.86 0.88 0.87 110
1.0 0.80 0.77 0.79 69
accuracy 0.84 179
macro avg 0.83 0.82 0.83 179
weighted avg 0.84 0.84 0.84 179
Evaluation of RandomForest:
Accuracy: 0.8044692737430168
Confusion Matrix:
[[94 16]
[19 50]]
Classification Report:
precision recall f1-score support
0.0 0.83 0.85 0.84 110
1.0 0.76 0.72 0.74 69
accuracy 0.80 179
macro avg 0.79 0.79 0.79 179
weighted avg 0.80 0.80 0.80 179
Evaluation of GradientBoosting:
Accuracy: 0.8100558659217877
Confusion Matrix:
[[98 12]
[22 47]]
Classification Report:
precision recall f1-score support
0.0 0.82 0.89 0.85 110
1.0 0.80 0.68 0.73 69
accuracy 0.81 179
macro avg 0.81 0.79 0.79 179
weighted avg 0.81 0.81 0.81 179
Evaluation of XGBoost:
Accuracy: 0.8268156424581006
Confusion Matrix:
[[98 12]
[19 50]]
Classification Report:
precision recall f1-score support
0.0 0.84 0.89 0.86 110
1.0 0.81 0.72 0.76 69
accuracy 0.83 179
macro avg 0.82 0.81 0.81 179
weighted avg 0.83 0.83 0.82 179
Evaluation of SVC:
Accuracy: 0.8379888268156425
Confusion Matrix:
[[104 6]
[ 23 46]]
Classification Report:
precision recall f1-score support
0.0 0.82 0.95 0.88 110
1.0 0.88 0.67 0.76 69
accuracy 0.84 179
macro avg 0.85 0.81 0.82 179
weighted avg 0.84 0.84 0.83 179
Evaluation of KNeighbors:
Accuracy: 0.8100558659217877
Confusion Matrix:
[[95 15]
[19 50]]
Classification Report:
precision recall f1-score support
0.0 0.83 0.86 0.85 110
1.0 0.77 0.72 0.75 69
accuracy 0.81 179
macro avg 0.80 0.79 0.80 179
weighted avg 0.81 0.81 0.81 179
best_model_name = max(validation_scores, key=validation_scores.get)
best_model = best_models[best_model_name]
print(f"The best model is: {best_model_name} with accuracy: {validation_scores[best_model_name]}")
The best model is: LogisticRegression with accuracy: 0.8379888268156425
# Train the best model on the full training data
best_model.fit(X, y)
LogisticRegression(C=1, max_iter=1000)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
# Make predictions
predictions = best_model.predict(test_dataframe)
predictions
array([0., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,
0., 1., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1.,
1., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0.,
0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0.,
1., 1., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0., 0., 0., 0.,
0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0.,
0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 1.,
1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
1., 0., 0., 1., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 1.,
0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1.,
0., 0., 0., 0., 0., 1., 0., 1., 0., 1., 1., 0., 1., 1., 1., 0., 1.,
0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1.,
0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
1., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0.,
0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
0., 1., 0., 1., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1.,
0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0.,
1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1.,
1., 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
1., 1., 1., 1., 1., 0., 1., 0., 0., 1.])
submission = pd.DataFrame({
"PassengerId": test_df["PassengerId"],
"Survived": predictions.astype('int')
})
submission.to_csv('submission.csv', index=False)