A Step Closer to Fast-Charging Batteries
Most of us have probably not thought about cracking the code of "traffic management" inside a lithium ion battery. But a team of researchers at Brookhaven National Labs and Lawrence Berkeley Labs have done just that.
They captured in real time how lithium ions move in lithium titanate (LTO), a fast-charging battery electrode material made of lithium, titanium, and oxygen. They discovered that distorted arrangements of lithium and surrounding atoms in LTO “intermediates” (structures of LTO with a lithium concentration in between that of its initial and end states) provide an “express lane” for the transport of lithium ions. Their discovery, reported in the Feb. 28 issue of Science, could provide insights into designing improved battery materials for the rapid charging of electric vehicles and portable consumer electronics such as cell phones and laptops.
“Consider that it only takes a few minutes to fill up the gas tank of a car but a few hours to charge the battery of an electric vehicle,” said co-corresponding author Feng Wang, a materials scientist in Brookhaven Lab’s Interdisciplinary Sciences Department. “Figuring out how to make lithium ions move faster in electrode materials is a big deal, as it may help us build better batteries with greatly reduced charging time.”
Lithium-ion batteries work by shuffling lithium ions between a positive and negative electrode (cathode and anode) through a chemical medium called an electrolyte. Graphite is commonly employed as the anode in state-of-the-art lithium-ion batteries, but for fast-charging applications, LTO is an appealing alternative. LTO can accommodate lithium ions rapidly, without suffering from lithium plating (the deposition of lithium on the electrode surface instead of internally)...
See the full article and a video on the path of the ions through LTO at Cleantech Concepts.
Source: Brookhaven National Labs, Lawrence Berkeley National Labs, Cleantech Concepts.