SQL vs. NoSQL Databases
What is a SQL database?
SQL, which stands for “Structured Query Language,” is the programming language that’s been widely used in managing data in relational database management systems (RDBMS) since the 1970s. In the early years, when storage was expensive, SQL databases focused on reducing data duplication.
Fast-forward to today, and SQL is still widely used for querying relational databases, where data is stored in rows and tables that are linked in various ways. One table record may link to one other or to many others, or many table records may be related to many records in another table. These relational databases, which offer fast data storage and recovery, can handle great amounts of data and complex SQL queries.
What is a NoSQL database?
NoSQL is a non-relational database, meaning it allows different structures than a SQL database (not rows and columns) and more flexibility to use a format that best fits the data. The term “NoSQL” was not coined until the early 2000s. It doesn’t mean the systems don’t use SQL, as NoSQL databases do sometimes support some SQL commands. More accurately, “NoSQL” is sometimes defined as “not only SQL.”
How SQL works
SQL databases are valuable in handling structured data, or data that has relationships between its variables and entities.
In general, SQL databases can scale vertically, meaning you can increase the load on a server by migrating to a larger server that adds more CPU, RAM or SSD capability. While vertical scalability is used most frequently, SQL databases can also scale horizontally through sharding or partitioning logic, although that’s not well-supported.
SQL database schema organizes data in relational, tabular ways, using tables with columns or attributes and rows of records. Because SQL works with such a strictly predefined schema, it requires organizing and structuring data before starting with the SQL database.
RDBMS, which use SQL, must exhibit four properties, known by the acronym ACID. These ensure that transactions are processed successfully and that the SQL database has a high level of reliability:
How NoSQL works
Unlike SQL, NoSQL systems allow you to work with different data structures within a database. Because they allow a dynamic schema for unstructured data, there’s less need to pre-plan and pre-organize data, and it’s easier to make modifications. NoSQL databases allow you to add new attributes and fields, as well as use varied syntax across databases.
NoSQL databases scale better horizontally, which means one can add additional servers or nodes as needed to increase load.
NoSQL databases are not relational, so they don’t solely store data in rows and tables. Instead, they generally fall into one of four types of structures:
The CAP theorem says that distributed data systems allow a trade-off that can guarantee only two of the following three properties (which form the acronym CAP) at any one time:
When to use SQL
SQL is a good choice when working with related data. Relational databases are efficient, flexible and easily accessed by any application. A benefit of a relational database is that when one user updates a specific record, every instance of the database automatically refreshes, and that information is provided in real-time.
SQL and a relational database make it easy to handle a great deal of information, scale as necessary and allow flexible access to data — only needing to update data once instead of changing multiple files, for instance. It’s also best for assessing data integrity. Since each piece of information is stored in a single place, there’s no problem with former versions confusing the picture.
Most of the big tech companies use SQL, including Uber, Netflix and Airbnb. Even major companies like Google, Facebook and Amazon, which build their own database systems, use SQL to query and analyze data.
When to use NoSQL
While SQL is valued for ensuring data validity, NoSQL is good when it’s more important that the availability of big data is fast. It’s also a good choice when a company will need to scale because of changing requirements. NoSQL is easy-to-use, flexible and offers high performance.
NoSQL is also a good choice when there are large amounts of (or ever-changing) data sets or when working with flexible data models or needs that don’t fit into a relational model. When working with large amounts of unstructured data, document databases (e.g., CouchDB, MongoDB, and Amazon DocumentDB) are a good fit. For quick access to a key-value store without strong integrity guarantees, Redis may be the best choice. When a complex or flexible search across a lot of data is needed, Elastic Search is a good choice.
Scalability is a significant benefit of NoSQL databases. Unlike with SQL, their built-in sharding and high availability requirements allow horizontal scaling. Furthermore, NoSQL databases like Cassandra, developed by Facebook, handle massive amounts of data spread across many servers, having no single points of failure and providing maximum availability.
Other big companies that use NoSQL systems because they are dependent on large volumes of data not suited to a relational database include Amazon, Google and Netflix. In general, the more extensive the dataset, the more likely that NoSQL is a better choice.