Solubility Behavior of Pimozide in Polar and Nonpolar Solvents: Partial Solubility Parameters Approach

Published: 06 August 2008

Solubility Behavior of Pimozide in Polar and Nonpolar Solvents: Partial Solubility Parameters Approach

  • J. Thimmasetty, C. V. S. Subrahmanyam, P. R. Sathesh Babu, M. A. Maulik & B. A. Viswanath 

Journal of Solution Chemistry volume

 37, 

pages

1365–1378(2008)Cite this article

Abstract

The solubility behavior of pimozide in individual solvents ranging from nonpolar to highly polar was studied. For understanding the solute-solvent interactions, the partial solubility parameters concept was utilized. Solutions containing excess drug were shaken in a water bath for 72 hours at 25 °C. After the solutions attained equilibrium, they were filtered and analyzed for drug content. A multiple regression method, using extended Hansen’s partial solubility parameters, was applied to verify the solubilities of pimozide in pure polar and nonpolar solvents and to predict its solubility in untested solvents. The three-parameter approach and the Flory-Huggins size correction term ‘B’ give predictions of solubilities with correlations up to 97%. The four-parameter approach involving proton-donor and proton-acceptor parameters was also used in fitting the solubility data. The correlations are appreciable (94%). Further, the ‘B’ term coupled with four-parameter approach was examined in order to improve the data representation, and resulted in a 1% improvement (98%) in the correlation when compared to the Flory-Huggins size-correction method. The solubility parameter obtained by this method is 10.43 H which is closer to the values obtained by theoretical methods, such as Fedors’ and Hoy’s. The resulting partial solubility parameters are δ 2d =8.85 H, δ 2p =2.17 H, δ 2a =3.15 H, and δ 2b =4.08 H, which give insights into the interaction capability of pimozide and are consistent with its chemical structure. Pimozide is a Lewis base as its δ 2b >δ 2a . The total solubility parameter of pimozide is assigned at 10.43 H. This work demonstrates for the first time the validity of the four-parameter approach coupled with the Flory-Huggins size-correction term and therefore the result is interesting.

This is a preview of subscription content, log in to check access.

References

  1. 1.
  2. Barton, A.F.M.: Handbook of Solubility Parameter and Other Cohesion Parameters. CRC Press, Boca Raton (1991)
  3. Google Scholar
  4. Fedors, R.F.: A method of estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)
  5. Article 
  6. CAS
  7. Google Scholar
  8. Mullins, L.: Some physical mechanisms in narcosis. Chem. Rev. 54, 289–323 (1954)
  9. Article
  10. CAS
  11. Google Scholar
  12. Khalil, S.A., Abdallah, O.A., Moustafa, M.A.: Absorption of some barbiturates by gambusia fish and its correlation to solubility parameter. Can. J. Pharm. Sci. 11, 26–30 (1976)
  13. CAS
  14. Google Scholar
  15. Khalil, S.A., Abdullah, O.A., Moustafa, M.A.: The use of the solubility parameter as an index of drug activity. Can. J. Pharm. Sci. 11, 121–126 (1976)
  16. CAS
  17. Google Scholar
  18. Roy, S.D., Flynn, G.L.: Solubility and related physicochemical properties of narcotic analgesics. Pharm. Res. 15, 1370–1375 (1998)
  19. Article
  20. Google Scholar
  21. Martini, L.G., Avontuur, P., George, A., Wilson, R.J., Crowly, P.J.: Solubility parameter and oral absorption. Eur. J. Pharm. Biopharm. 48, 259–263 (1999)
  22. Article
  23. CAS
  24. Google Scholar
  25. Adjei, A., Newburger, J., Stavchansky, S., Martin, A.: Membrane solubility parameter and in situ release of theophylline. J. Pharm. Sci. 73, 742–745 (1984)
  26. Article
  27. CAS
  28. Google Scholar
  29. Phuoc, N.H., Tan, L.R.P., Munafo, A., Ruelle, P., Nam-Tran, H., Buchmann, M., Kesselring, U.W.: Determination of partial solubility parameters of lactose by gas-solid chromatography. J. Pharm. Sci. 75, 68–72 (1986)
  30. Article
  31. Google Scholar
  32. Javier, F., Lupion, N., Bustamante, P., Escalera, B.: Relationship between swelling of hydroxypropylmethylcellulose and the Hansen and Karger partial solubility parameters. J. Pharm. Sci. 94, 1608–1616 (2005)
  33. Article
  34. Google Scholar
  35. Wells, J.I.: Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances. Ellis Horwood Limited, Chichester (1988)
  36. Google Scholar
  37. Bustamante, P., Pena, M.A., Barra, J.: Partial solubility parameters of naproxen and sodium diclofenac. J. Pharm. Pharmacol. 50, 975–982 (1998)
  38. CAS 
  39. Google Scholar
  40. Forster, A., Hempenstall, J., Tucker, I., Rades, T.: Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 226, 147–161 (2001)
  41. Article
  42. CAS
  43. Google Scholar
  44. Gani, R., Jimenez-Gonzalez, C., Constable, D.J.C.: Method for selection of solvents for promotion of organic reactions. Comput. Chem. Eng. 29, 1661–1676 (2005)
  45. Article
  46. CAS
  47. Google Scholar
  48. Alazar, N.G., Chandra, V., Mayur, L.: Use of surfactants as plasticizers in preparing solid dispersion of poorly soluble API: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int. J. Pharm. 328, 119–129 (2007)
  49. Article
  50. Google Scholar
  51. Rowe R.C.: Adhesion of film coatings to tablet surfaces a theoretical approach based on solubility parameters. Int. J. Pharm. 41, 219–222 (1988)
  52. Article
  53. CAS
  54. Google Scholar
  55. Rowe, R.C.: Binder-substrate interactions in granulation: a theoretical approach based on surface free energy and polarity. Int. J. Pharm. 52, 149–154 (1989)
  56. Article
  57. CAS
  58. Google Scholar
  59. Hancock, B.C., York, P., Rowe, R.C.: The use of solubility parameters in pharmaceutical dosage form design. Int. J. Pharm. 148, 1–21 (1997)
  60. Article
  61. CAS
  62. Google Scholar
  63. Minghetti, P., Cilurzo, F., Casiraghi, A., Montanari, L.: Application of viscometry and solubility parameters in miconazole patches development. Int. J. Pharm. 190, 91–101 (1999)
  64. Article
  65. CAS
  66. Google Scholar
  67. Wagner, K.G., Dowe, U., Zadnik, J.: Highly loaded interactive mixtures for dry powder inhalers: prediction of the adhesion capacity using surface energy and solubility parameters. Pharmazie 60, 339–344 (2005)
  68. CAS
  69. Google Scholar
  70. Greenhalgh, D.J., Williams, A.C., Timmins, P., York, P.: Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 88, 1182–1190 (1999)
  71. Article
  72. CAS
  73. Google Scholar
  74. Martin, A., Mauger, J.: The curious solubility of phenobarbital: how to use solubility parameters. Am. J. Pharm. Educ. 52, 68–75 (1988)
  75. Google Scholar
  76. Hansen, C.M.: The three-dimensional solubility parameter—key to paint-component affinities: I. Solvents, plasticizers, polymers, and resins. J. Paint. Technol. 39, 104–117 (1967)
  77. CAS
  78. Google Scholar
  79. Adjei, A., Newburger, J., Martin, A.: Extended Hildebrand approach: solubility of caffeine in dioxane-water mixtures. J. Pharm. Sci. 69, 659–661 (1980)
  80. Article
  81. CAS
  82. Google Scholar
  83. Richardson, P.J., McCafferty, D.F., Woolfson, A.D.: Determination of the three-component partial solubility parameters for temazepam and the effects of change in partial molal volume on the thermodynamics of drug solubility. Int. J. Pharm. 78, 189–198 (1992)
  84. Article
  85. CAS
  86. Google Scholar
  87. Barra, J., Lescure, F., Doelker, E., Bustamante, P.: The expanded Hansen approach to solubility parameters. Paracetamol and citric acid in individual solvents. J. Pharm. Pharmacol. 49, 644–651 (1997)
  88. CAS
  89. Google Scholar
  90. Martin, A., Wu, P.L., Adjei, A., Beerbower, A., Prausnitz, J.M.: Extended Hansen solubility approach: Naphthalene in individual solvents. J. Pharm. Sci. 70, 1260–1264 (1981)
  91. Article
  92. CAS
  93. Google Scholar
  94. Beerbower, A., Wu, P.L., Martin, A.: Expanded solubility parameter approach: I. Naphthalene and benzoic acid in individual solvents. J. Pharm. Sci. 73, 179–188 (1984)
  95. Article 
  96. CAS
  97. Google Scholar
  98. Krevelen, D.W.V.: Properties of Polymers. Elsevier, Amsterdam (1990)
  99. Google Scholar
  100. Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th edn., p. 7593. Merck Research Laboratory, Merck & Co. Inc., White House Station (1996)
  101. Google Scholar
  102. Martin, A., Wu, P.L., Beerbower, A.: Expanded solubility parameter approach II: p-hydroxy benzoic acid and methyl p-hydroxy benzoate in individual solvents. J. Pharm. Sci. 73, 188–194 (1984)
  103. Article
  104. CAS
  105. Google Scholar
  106. Hoy, K.C.: New values of the solubility parameters from vapour pressure data. J. Paint. Technol. 41, 76–118 (1970)
  107. Google Scholar
  108. Barton, A.F.M.: Solubility parameters. Chem. Rev. 75, 731–753 (1975)
  109. Article
  110. CAS
  111. Google Scholar
  112. Ainley, W., Paul, J.W.: Handbook of Pharmaceutical Excipients, 2nd edn. The Pharmaceutical Press, London (1994)
  113. Google Scholar
  114. Lawrence, A.T.: Handbook on Injectable Drugs, 10th edn. American Society of Health-System Pharmacists, Bethesda (1998)
  115. Google Scholar
  116. Hansen, C.M., Beerbower, A.: Encyclopedia of Chemical Technology, 2nd edn., p. 889. Wiley, New York (1971)
  117. Google Scholar
  118. Beckett, A.H., Stenlake, J.B.: Practical Pharmaceutical Chemistry, 3rd edn., pp. 1–5. CBS Publ./Distr., New Delhi (1986)
  119. Google Scholar
  120. Bustamante, P., Escalera, B., Martin, A., Selles, E.: Predicting the solubility of sulphamethoxypyridazine in individual solvents. I. Calculating partial solubility parameters. J. Pharm. Sci. 78, 567–573 (1989)
  121. Article
  122. CAS
  123. Google Scholar
  124. Subrahmanyam, C.V.S., Sarasija, S.: Solubility behaviour of haloperidol in individual solvents determination of partial solubility parameters. Eur. J. Pharm. Biopharm. 47, 289–294 (1999)
  125. Article
  126. CAS
  127. Google Scholar
  128. Subrahmanyam, C.V.S., Ravi Prakash, K., Gundu Rao, P.: Estimation of the solubility parameter of trimethoprim by current methods. Pharm. Acta Helv. 71, 175–183 (1996)
  129. Article
  130. CAS
  131. Google Scholar
  132. Bustamante, P., Pena, M.A., Barra, J.: The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na. Int. J. Pharm. 194, 117–124 (2000)
  133. Article
  134. CAS
  135. Google Scholar

Download references


Author information

Affiliations

  1. Bapuji Pharmacy College, Davangere, Karnataka, India
  2. J. Thimmasetty, P. R. Sathesh Babu & M. A. Maulik
  3. Vinayaka Missions University, Salem, Tamilnadu, India
  4. J. Thimmasetty
  5. G.R. College of Pharmacy, Bachupally, Hyderabad, Andhra Pradesh, India
  6. C. V. S. Subrahmanyam
  7. Bangalore Institute for Pharmacy Education and Research Centre, Bangalore, Karnataka, India
  8. B. A. Viswanath

Corresponding author

Correspondence to J. Thimmasetty.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thimmasetty, J., Subrahmanyam, C.V.S., Sathesh Babu, P.R. et al. Solubility Behavior of Pimozide in Polar and Nonpolar Solvents: Partial Solubility Parameters Approach. J Solution Chem 37, 1365–1378 (2008). https://doi.org/10.1007/s10953-008-9317-8

Download citation

要查看或添加评论,请登录

社区洞察

其他会员也浏览了