Solar “Hotspots” Boost Desalination by 50%
Rice University researchers (from left) Pratiksha Dongare, Alessandro Alabastri and Oara Neumann showed that Rice's "nanophotonics-enabled solar membrane distillation" (NESMD) system was more efficient when the size of the device was scaled up and li

Solar “Hotspots” Boost Desalination by 50%

Solar desalination methods have been around for awhile, both for powering the process, and to help with evaporation. Rice University’s solar-powered approach for purifying salt water with sunlight and nanoparticles promises more efficiency through the use of cost-effective lenses.

Researchers in Rice’s Laboratory for Nanophotonics (LANP) this week showed they could boost the efficiency of their solar-powered desalination system by more than 50% simply by adding inexpensive plastic lenses to concentrate sunlight into “hot spots.” The results are available online in the Proceedings of the National Academy of Sciences.

“The typical way to boost performance in solar-driven systems is to add solar concentrators and bring in more light,” said Pratiksha Dongare, a graduate student in applied physics at Rice’s Brown School of Engineering and co-lead author of the paper. “The big difference here is that we’re using the same amount of light. We’ve shown it’s possible to inexpensively redistribute that power and dramatically increase the rate of purified water production.”

In conventional membrane distillation, hot, salty water is flowed across one side of a sheetlike membrane while cool, filtered water flows across the other. The temperature difference creates a difference in vapor pressure that drives water vapor from the heated side through the membrane toward the cooler, lower-pressure side. Scaling up the technology is difficult because the temperature difference across the membrane — and the resulting output of clean water — decreases as the size of the membrane increases. Rice’s “nanophotonics-enabled solar membrane distillation” (NESMD) technology addresses this by using light-absorbing nanoparticles to turn the membrane itself into a solar-driven heating element.

Dongare and colleagues, including study co-lead author Alessandro Alabastri, coat the top layer of their membranes with low-cost, commercially available nanoparticles that are designed to convert more than 80% of sunlight energy into heat. The solar-driven nanoparticle heating reduces production costs, and Rice engineers are working to scale up the technology for applications in remote areas that have no access to electricity.

The concept and particles used in NESMD were first demonstrated in 2012 by LANP director Naomi Halas and research scientist Oara Neumann, who are both co-authors on the new study. In this week’s study, Halas, Dongare, Alabastri, Neumann and LANP physicist Peter Nordlander found they could exploit an inherent and previously unrecognized nonlinear relationship between incident light intensity and vapor pressure.

In the case of NESMD, the nonlinear improvement comes from concentrating sunlight into tiny spots, much like a child might with a magnifying glass on a sunny day. Concentrating the light on a tiny spot on the membrane results in a linear increase in heat, but the heating, in turn, produces a nonlinear increase in vapor pressure. And the increased pressure forces more purified steam through the membrane in less time.

For the full article and to find out more about the process, please visit Cleantech Concepts.

Source: Rice University and Cleantech Concepts.

Tom Breunig is publisher of Cleantech Concepts, which tracks cleantech research and development national and university labs.

要查看或添加评论,请登录

Tom Breunig的更多文章

  • Simple Fix for Li-ion Battery Bank Fires

    Simple Fix for Li-ion Battery Bank Fires

    Some challenges go unaddressed because we think a solution must involve advanced technology. A deceptively simple…

  • Mocean Heads to Ocean: Wave Energy

    Mocean Heads to Ocean: Wave Energy

    Last month Mocean Energy unveiled its Blue X wave energy prototype that will take to the seas in Orkney in a matter of…

  • Hydrogen "Paste" for Micromobility?

    Hydrogen "Paste" for Micromobility?

    Existing hydrogen vehicles are equipped with a reinforced tank that is fueled at a pressure of 700 bar. This tank feeds…

    7 条评论
  • BP and Chevron Turn to Geothermal

    BP and Chevron Turn to Geothermal

    BP and Chevron have invested in Eavor Technologies Inc., an innovative technology company that (finally) may help drive…

  • Bertrand Piccard: Aviation Can Rise to the Carbon Challenge, Here's How

    Bertrand Piccard: Aviation Can Rise to the Carbon Challenge, Here's How

    Bertrand Piccard makes no apologies for being an aviation enthusiast, and believes that despite its current woes the…

  • Hydrogen Converts Common Plastic into High-Value Molecules

    Hydrogen Converts Common Plastic into High-Value Molecules

    Most plastic recycling produces low-value materials -- but this team has found a way to turn a common plastic into…

  • LBNL Develops Renewable Jet Fuel

    LBNL Develops Renewable Jet Fuel

    Air travel emissions have a huge negative impact on the environment due to greenhouse gas emissions from traditional…

  • Li-Ion Approach Boosts Efficiency and Puts Out Fires

    Li-Ion Approach Boosts Efficiency and Puts Out Fires

    In an entirely new approach to making lithium-ion batteries lighter, safer and more efficient, scientists at Stanford…

  • Sodium Battery Work: Li-Ion Performance

    Sodium Battery Work: Li-Ion Performance

    Lithium-ion batteries are ubiquitous, used in numerous applications such as cell phones, laptops, and electric…

    1 条评论
  • Storing Excess Electricity as Hydrogen

    Storing Excess Electricity as Hydrogen

    While many utilities are evaluating trailerfuls of batteries for quick deployment of power into the grid, researchers…

    15 条评论

社区洞察

其他会员也浏览了