Small powerhouses for very special light
? stock.adobe.com

Small powerhouses for very special light

An international team presents the functional principle of a new source of synchrotron radiation in Nature Communications Physics. Steady-state microbunching (SSMB) allows to build efficient and powerful radiation sources for coherent UV radiation in the future. This is very attractive for applications in basic research as well in the semiconductor industry.

When ultrafast electrons are deflected, they emit light - synchrotron radiation. This is used in so called storage rings in which magnets force the particles onto a closed path. This light is longitudinally incoherent and consists of a broad spectrum of wavelengths. Its high brilliance makes it an excellent tool for materials research. Monochromators can be used to pick out individual wavelengths from the spectrum, but this reduces the radiant power by many orders of magnitude to values of a few watts only.

A pulsed laser co-propagates with the electron beam through the MLS U125 undulator and imposes an energy modulation. The same undulator serves as a radiator on the following passes of the electron beam. The undulator radiation is detected by a fast photodiode, while the laser pulse is blocked from the detection path using an electro-optical switch. ? HZB/ Communications Physics


Size matters

But what if a storage ring were instead to deliver monochromatic, coherent light with outputs of several kilowatts, analogous to a high-power laser? Physicist Alexander Chao and his doctoral student Daniel Ratner found an answer to this challenge in 2010: if the electron bunches orbiting in a storage ring become shorter than the wavelength of the light they emit, the emitted radiation becomes coherent and therefore millions of times more powerful.

"You need to know that the electrons in a storage ring are not homogeneously distributed," explains Arnold Kruschinski, PhD student at HZB and lead author of the paper. "They move in bunches with a typical length of about a centimetre and a distance around 60 centimetres. That is six orders of magnitude more than the micro-bunches proposed by Alexander Chao." Chinese theorist Xiujie Deng has defined a set of settings for a specific type of circular accelerator, the isochrone or "low-alpha" rings, for the Steady-State Micro-Bunching project (SSMB). After interacting with a laser, these create short particle bunches that are only one micrometre long.

The research team from HZB, 清华大学 and Physikalisch-Technische Bundesanstalt, PTB already demonstrated that this works in a proof-of-principle experiment in 2021. They used the Metrology Light Source (MLS) in Berlin-Adlershof - the first storage ring ever designed for low-alpha operation. The team has now been able to fully verify Deng's theory for generating micro-bunches in extensive experiments. "For us, this is an important step on the way to a new type of SSMB radiation source," says Arnold Kruschinski.


J?rg Feikes and PhD student Arnold Kruschinski in the control room of BESSY II and the MLS. ? Ina Helms / HZB


The long road to success

However, HZB project manager J?rg Feikes is certain that it will take some time until then. He sees some parallels between the SSMB and the development of free-electron lasers. "After initial experiments and decades of development work, this idea turned into kilometre-long, superconducting accelerator," he says. "Such developments are very long-term. It starts with an idea, then a theory, and then there are experimenters who gradually realise it and I think that SSMB will develop in the same way."

Text: Kai Duerfeld / Wissenschaftsjournalist


Science Paper: Communications Physics (2024) "Confirming the theoretical foundation of steady-state microbunching" DOI: 10.1038/s42005-024-01657-y

Arnold Kruschinski, Xiujie Deng, J?rg Feikes, Arne Hoehl, Roman Klein, Ji Li, Markus Ries & Alexander Chao?


Contact:

Dr. J?rg Feikes

E-Mail: [email protected]


Roland Sillmann

Technologie - Talente - Toleranz??

4 个月

Its always amazing what super smart people in an inspiring surrounding could create. And these things are only possible due to international cooperation. So we all should remember that tolerance is not only an moralic aspect, which of course it is. It is in science and in economics a "must have" to be successful.

Alexander Gottwald

Physiker bei Physikalisch-Technische Bundesanstalt, PTB

5 个月

Congrats to the colleagues from HZB and PTB for the impressive validation of the predictions. But I'm not sure about the "powerhouse" ... at least I think at PTB's MLS a lot of people spent lots of power to keep such things running.

Carl Altschwager

Auditor at J&A Auditing

5 个月

Amazing. Congratulations.

要查看或添加评论,请登录

社区洞察

其他会员也浏览了