Skana AI, The AI Scientist

Skana AI, The AI Scientist

Sakana AI, in collaboration with scientists from the University of Oxford and the University of British Columbia, has developed an artificial intelligence system that can conduct end-to-end scientific research autonomously. This breakthrough, named “The AI Scientist,” promises to completely transform the process of scientific discovery.

The AI Scientist is a fully automated pipeline for end-to-end paper generation, enabled by recent advances in foundation models. Given a broad research direction starting from a simple initial codebase, such as an available open-source code base of prior research on GitHub, The AI Scientist can perform idea generation, literature search, experiment planning, experiment iterations, figure generation, manuscript writing, and reviewing to produce insightful papers. Furthermore, The AI Scientist can run in an open-ended loop, using its previous ideas and feedback to improve the next generation of ideas, thus emulating the human scientific community.

The AI Scientist has 4 main processes, described next.

Idea Generation. Given a starting template, The AI Scientist first “brainstorms” a diverse set of novel research directions. We provide The AI Scientist with a starting code “template” of an existing topic we wish to have The AI Scientist further explore. The AI Scientist is then free to explore any possible research direction. The template also includes a LaTeX folder that contains style files and section headers, for paper writing. We allow it to search Semantic Scholar to make sure its idea is novel.

Experimental Iteration. Given an idea and a template, the second phase of The AI Scientist first executes the proposed experiments and then obtains and produces plots to visualize its results. It makes a note describing what each plot contains, enabling the saved figures and experimental notes to provide all the information required to write up the paper.

Paper Write-up. Finally, The AI Scientist produces a concise and informative write-up of its progress in the style of a standard machine learning conference proceeding in LaTeX. It uses Semantic Scholar to autonomously find relevant papers to cite.

Automated Paper Reviewing. A key aspect of this work is the development of an automated LLM-powered reviewer, capable of evaluating generated papers with near-human accuracy. The generated reviews can be used to either improve the project or as feedback to future generations for open-ended ideation. This enables a continuous feedback loop, allowing The AI Scientist to iteratively improve its research output.

When combined with the most capable LLMs, The AI Scientist is capable of producing papers judged by our automated reviewer as “Weak Accept” at a top machine learning conference.

https://sakana.ai/ai-scientist/

Ahmad Saadat

.NET Developer & Angular

4 周

Thanks for sharing ??

要查看或添加评论,请登录

社区洞察

其他会员也浏览了