Retail Analytics
Retail analytics involves using software to collect and analyze data from physical, online, and catalog outlets to provide retailers with insights into customer behavior and shopping trends. It can also be used to inform and improve decisions about pricing, inventory, marketing, merchandising, and store operations by applying predictive algorithms against data from both internal sources (such as customer purchase histories) and external repositories (such as weather forecasts). In addition, retail analytics can measure customer loyalty, identify purchasing patterns, predict demand, and optimize store layouts so that, for instance, retailers can place items on store shelves that are often bought together or offer personalized discounts to frequent shoppers that will result in higher average basket sizes and more frequent visits.
Retail analytics is the science of collecting, analyzing, and reporting on data related to a retailer’s operations. It complements the art of retail.
Retail analytics can apply to analyzing customer behavior, tracking inventory levels, measuring the effectiveness of marketing campaigns, and more. For example, by analyzing data from a variety of sources, such as customer purchase histories, call center logs, and POS systems, retailers can gain valuable insights into their customers’ habits and preferences so they can adjust their product offerings, pricing, return policies, and even their physical and online store layouts accordingly. Analytics also helps retailers make better decisions about which promotions to run and which marketing strategies to focus on, as well as when to staff up and down. Ultimately, data analytics helps retailers increase sales, reduce costs, and improve customer satisfaction and loyalty.
Benefits of Retail Analytics
Retail analytics is a set of tools that retailers use to help them increase revenue, reduce overhead and labor costs, and improve their margins. Some of the ways retail analytics can accomplish these goals are by:
Types of Retail Data Analytics
There are four main types of retail data analytics: descriptive analytics that reflect and explain past performance; diagnostic analytics to determine the root cause of a given problem; predictive analytics to forecast future results; and prescriptive analytics to recommend next steps. Below is more detail on each of the four approaches.
Descriptive analytics
Descriptive analytics is the foundation for more sophisticated types of analytics, including those that follow in this list. It addresses fundamental questions of “how many, when, where, and what”—the stuff of basic business intelligence tools and dashboards that provide weekly reports on sales and inventory levels.
领英推荐
Diagnostic analytics
Diagnostic analytics helps retail organizations identify and analyze issues that may be hindering their performance. By combining data from multiple sources, such as customer feedback, financial performance, and operational metrics, retailers gain a more comprehensive understanding of the root causes of problems they face.
Predictive analytics
Predictive analytics helps retailers anticipate future events based on several variables, including weather, economic trends, supply chain disruptions, and new competitive pressures. This approach often takes the form of a what-if analysis, which, for example, would let a retailer map out what would happen if it offered a 10% discount versus 15% on a product, or estimate when it would run out of stock based on a given set of possible actions.
Prescriptive analytics
Prescriptive analytics is where AI and big data combine to take those predictive analytics outcomes and recommend actions. Prescriptive analytics can, for example, provide customer service agents with suggested offers they can pass along to customers on the fly, whether that be an upsell based on previous purchase history or a cross-sell to satisfy a new customer inquiry.
Retail Analytics Tools
Retail analytics relies on data captured through a variety of means, both at physical store locations and on websites. The following are some of the tools used: