Read Entropy's High-cited Article "Quantum Machine Learning: A Review and Case Studies"

Read Entropy's High-cited Article "Quantum Machine Learning: A Review and Case Studies"

Authors: Amine Zeguendry, Zahi Jarir and Mohamed Quafafou

Read full article at: https://www.mdpi.com/1099-4300/25/2/287

Abstract: Despite its undeniable success, classical machine learning remains a resource-intensive process. Practical computational efforts for training state-of-the-art models can now only be handled by high speed computer hardware. As this trend is expected to continue, it should come as no surprise that an increasing number of machine learning researchers are investigating the possible advantages of quantum computing. The scientific literature on Quantum Machine Learning is now enormous, and a review of its current state that can be comprehended without a physics background is necessary. The objective of this study is to present a review of Quantum Machine Learning from the perspective of conventional techniques. Departing from giving a research path from fundamental quantum theory through Quantum Machine Learning algorithms from a computer scientist’s perspective, we discuss a set of basic algorithms for Quantum Machine Learning, which are the fundamental components for Quantum Machine Learning algorithms. We implement the Quanvolutional Neural Networks (QNNs) on a quantum computer to recognize handwritten digits, and compare its performance to that of its classical counterpart, the Convolutional Neural Networks (CNNs). Additionally, we implement the QSVM on the breast cancer dataset and compare it to the classical SVM. Finally, we implement the Variational Quantum Classifier (VQC) and many classical classifiers on the Iris dataset to compare their accuracies.

Keywords: quantum computing; quantum algorithms; Quantum Machine Learning (QML); quantum classification; Variational Quantum Circuit (VQC); QSVM; Quanvolutional Neural Network (QNN); Variational Quantum Classifier (VQC); quantum encoding

要查看或添加评论,请登录

Entropy MDPI的更多文章