Pushing K8s Cluster Logs to S3 Bucket & ES using Fluentd
Prakarsh -
Head of DevOps | Solutions Architect | Driving Scalable and Innovative Cloud-native Solutions
Storing logs on Elastic search can be very costly, both, in terms of cost as well as in terms of time when you’re trying to retrieve them back. So, in order to save cost, we started sending our Kubernetes cluster logs to AWS S3 bucket, where we would store them till 6 months while keeping the log’s retention policy on Elastic search to only 1 month.
Apart from Devtron Helm Charts deployment feature, you can also use Helm charts to deploy fluent-bit (to collect logs from various pods/deployments on K8s nodes) and fluentd (as an aggregator and forwarder of the logs to s3 or Elastic Search)
Installing Fluent-bit Helm Chart for forwarding K8s Cluster Logs to Fleuntd
Let’s look at the stable/fluent-bit helm chart configurations, you can use it to directly forward the logs to Elastic Search or forward the logs to fluentd for further processing/enrichment.
Edit the fluent-bit-fd-values-2.8.11.yaml below to make the changes mentioned as below.
Forwarding Logs to Fluentd (Required for forwarding logs to S3): To forward Kubernetes cluster logs to fluentd for further enrichment and then forwarding the logs to Elastic search and/or S3 bucket, specify the in-cluster fluentd service as host in the forward section and set the type of the backend to “forward“
Forwarding logs to Elastic Search: To forwards Kubernetes cluster logs directly to Elastic Search, you can specify the in cluster elastic search client service name or a hosted elastic search endpoint in the es configurations and set the type of the backend to “es“.
Installing Fluent-bit using Helm
Once you’ve edited the fluent-bit values file according to your use case, use helm install command to install it.
If this is the first time you’re using Helm, please Install and configure Helm-Tiller in your cluster first.
helm install fluent-bit stable/fluent-bit --version 2.8.11 -f fluent-bit-fd-values-2.8.11.yaml
To Uninstall Fluent-bit
helm delete fluent-bit --purge
fluent-bit-fd-values-2.8.11.yaml
# Minikube stores its logs in a separate directory. # Enable if you install the chart in minikube. on_minikube: false image: fluent_bit: repository: fluent/fluent-bit tag: 1.3.7 pullPolicy: Always testFramework: image: "dduportal/bats" tag: "0.4.0" nameOverride: "" fullnameOverride: "" # When enabled, exposes json and prometheus metrics on {{ .Release.Name }}-metrics service metrics: enabled: false service: # labels: # key: value annotations: {} # In order for Prometheus to consume metrics automatically use the following annotations: # prometheus.io/path: "/api/v1/metrics/prometheus" # prometheus.io/port: "2020" # prometheus.io/scrape: "true" port: 2020 type: ClusterIP serviceMonitor: enabled: false additionalLabels: {} # namespace: monitoring # interval: 30s # scrapeTimeout: 10s # When enabled, fluent-bit will keep track of tailing offsets across pod restarts. trackOffsets: false ## PriorityClassName ## Ref: https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/#priorityclass priorityClassName: "" backend: type: forward #You can change type to es and specify es configs to forward logs directly to Elastic Search forward: host: fluentd port: 24284 tls: "off" tls_verify: "on" tls_debug: 1 shared_key: es: host: elasticsearch port: 9200 # Elastic Index Name index: kubernetes_cluster type: flb_type logstash_prefix: kubernetes_cluster replace_dots: "On" logstash_format: "On" retry_limit: "False" time_key: "@timestamp" # Optional username credential for Elastic X-Pack access http_user: # Password for user defined in HTTP_User http_passwd: # Optional TLS encryption to ElasticSearch instance tls: "off" tls_verify: "on" # TLS certificate for the Elastic (in PEM format). Use if tls=on and tls_verify=on. tls_ca: "" # TLS debugging levels = 1-4 tls_debug: 1 splunk: host: 127.0.0.1 port: 8088 token: "" send_raw: "on" tls: "on" tls_verify: "off" tls_debug: 1 message_key: "kubernetes" stackdriver: {} ## ## Ref: https://fluentbit.io/documentation/current/output/http.html ## http: host: 127.0.0.1 port: 80 uri: "/" http_user: http_passwd: tls: "off" tls_verify: "on" tls_debug: 1 ## Specify the data format to be used in the HTTP request body ## Can be either 'msgpack' or 'json' format: msgpack # json_date_format: double or iso8601 headers: [] parsers: enabled: false ## List the respective parsers in key: value format per entry ## Regex required fields are name and regex. JSON and Logfmt required field ## is name. regex: [] logfmt: [] ## json parser config can be defined by providing an extraEntries field. ## The following entry: ## json: ## - extraEntries: | ## Decode_Field_As escaped log do_next ## Decode_Field_As json log ## ## translates into ## ## Command | Decoder | Field | Optional Action | ## ==============|===========|=======|===================| ## Decode_Field_As escaped log do_next ## Decode_Field_As json log ## json: [] env: [] ## Annotations to add to the DaemonSet's Pods podAnnotations: {} ## By default there different 'files' provides in the config ## (fluent-bit.conf, custom_parsers.conf). This defeats ## changing a configmap (since it uses subPath). If this ## variable is set, the user is assumed to have provided, ## in 'existingConfigMap' the entire config (etc/*) of fluent-bit, ## parsers and system config. In this case, no subPath is ## used fullConfigMap: false ## ConfigMap override where fullname is {{.Release.Name}}-{{.Values.existingConfigMap}} ## Defining existingConfigMap will cause templates/config.yaml ## to NOT generate a ConfigMap resource ## existingConfigMap: "" # NOTE If you want to add extra sections, add them here, inbetween the includes, # wherever they need to go. Sections order matters. rawConfig: |- @INCLUDE fluent-bit-service.conf @INCLUDE fluent-bit-input.conf @INCLUDE fluent-bit-filter.conf @INCLUDE fluent-bit-output.conf # WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # This is to add extra entries to an existing section, NOT for adding new sections # Do not submit bugs against indent being wrong. Add your new sections to rawConfig # instead. # extraEntries: input: |- # # >=1 additional Key/Value entrie(s) for existing Input section audit: |- # # >=1 additional Key/Value entrie(s) for existing Input section filter: |- # # >=1 additional Key/Value entrie(s) for existing Filter section output: |- # # >=1 additional Key/Value entrie(s) for existing Ouput section # WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ## Extra ports to add to the daemonset ports section extraPorts: [] ## Extra volumes containing additional files required for fluent-bit to work ## (eg. CA certificates) ## Ref: https://kubernetes.io/docs/concepts/storage/volumes/ ## extraVolumes: [] ## Extra volume mounts for the fluent-bit pod. ## Ref: https://kubernetes.io/docs/tasks/configure-pod-container/configure-volume-storage/ ## extraVolumeMounts: [] resources: {} # limits: # cpu: 100m # memory: 128Mi # requests: # cpu: 10m # memory: 8Mi # When enabled, pods will bind to the node's network namespace. hostNetwork: false # Which DNS policy to use for the pod. # Consider switching to 'ClusterFirstWithHostNet' when 'hostNetwork' is enabled. dnsPolicy: ClusterFirst ## Node tolerations for fluent-bit scheduling to nodes with taints ## Ref: https://kubernetes.io/docs/concepts/configuration/assign-pod-node/ ## tolerations: [] # - key: "key" # operator: "Equal|Exists" # value: "value" # effect: "NoSchedule|PreferNoSchedule|NoExecute(1.6 only)" ## Node labels for fluent-bit pod assignment ## Ref: https://kubernetes.io/docs/user-guide/node-selection/ ## nodeSelector: {} affinity: {} service: flush: 1 logLevel: info input: tail: memBufLimit: 5MB parser: docker path: /var/log/containers/*.log ignore_older: "" systemd: enabled: false filters: systemdUnit: - docker.service - kubelet.service - node-problem-detector.service maxEntries: 1000 readFromTail: true stripUnderscores: false tag: host.* audit: enable: false input: memBufLimit: 35MB parser: docker tag: audit.* path: /var/log/kube-apiserver-audit.log bufferChunkSize: 2MB bufferMaxSize: 10MB skipLongLines: On key: kubernetes-audit filter: kubeURL: https://kubernetes.default.svc:443 kubeCAFile: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt kubeTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token kubeTag: kube kubeTagPrefix: kube.var.log.containers. # If true, check to see if the log field content is a JSON string map, if so, # it append the map fields as part of the log structure. mergeJSONLog: true # If set, all unpacked keys from mergeJSONLog (Merge_Log) will be packed under # the key name specified on mergeLogKey (Merge_Log_Key) mergeLogKey: "" # If true, enable the use of monitoring for a pod annotation of # fluentbit.io/parser: parser_name. parser_name must be the name # of a parser contained within parsers.conf enableParser: true # If true, enable the use of monitoring for a pod annotation of # fluentbit.io/exclude: true. If present, discard logs from that pod. enableExclude: true # If true, the filter reads logs coming in Journald format. useJournal: false rbac: # Specifies whether RBAC resources should be created create: true # Specifies whether a PodSecurityPolicy should be created pspEnabled: false taildb: directory: /var/lib/fluent-bit serviceAccount: # Specifies whether a ServiceAccount should be created create: true # Annotations to add to the service account annotations: {} # The name of the ServiceAccount to use. # If not set and create is true, a name is generated using the fullname template name: ## Specifies security settings for a container ## Ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-container securityContext: {} # securityContext: # privileged: true ## Specifies security settings for a pod ## Ref: https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod podSecurityContext: {} # podSecurityContext:
# runAsUser: 1000
Now that we have configured fluent-bit to collect logs from various pods/deployments in our Kubernetes cluster, we now need an aggregator that aggregates all the logs and writes/pushes them to the required place (files, RDBMS, NoSQL, IaaS, SaaS, Hadoop, elastic search, AWS S3).
Installing Fluentd Helm Chart for forwarding Logs to Elastic Search as well as S3
Let’s look at the stable/fluentd helm chart configurations, we will configure fluentd to send logs collected from fluentbit (or other data sources) to Elastic Search (for shorter retention) as well as to AWS S3 bucket (for longer retention/archive).
Edit the following blocks in the sample fluentd-es-s3-values-2.3.2.yaml file provided below.
Elastic Search Configurations Block
Set the Elastic search configurations in the Elastic Search configuration block. You can set the in-cluster elastic search client service name or a hosted elastic search endpoint as host. (when using in-cluster service, do append the namespace of the elastic search client service separated by a dot, for example – a service elasticsearch-client in a namespace logging will be written as elasticsearch-client.logging in the host)
output: host: <elasticsearch-client>.<namespace> port: 9200 scheme: http sslVersion: TLSv1 buffer_chunk_limit: 2M buffer_queue_limit: 8
Fluentd Plugins Block
Enable the fluentd plugins and import fluent-plugin-s3 and fluent-plugin-rewrite-tag-filter
plugins: enabled: true pluginsList: - fluent-plugin-s3 - fluent-plugin-rewrite-tag-filter
S3 Bucket Configurations Block
Set the S3 configurations in the S3 configurations block. Set the s3_bucket, s3_region, path.
<match **> @type s3 s3_bucket <k8s-logs-bucket> s3_region <ap-southeast-1> s3_object_key_format "${tag}/%{time_slice}-events_%{index}.%{file_extension}" time_slice_format %Y/%m/%d/%H time_slice_wait 10m path cluster1-logs # if you want to use ${tag} or %Y/%m/%d/ like syntax in path / s3_object_key_format, # need to specify tag for ${tag} and time for %Y/%m/%d in <buffer> argument. <buffer tag,time> @type file flush_mode interval flush_interval 30s path /var/log/fluent/s3 timekey 300 # 1 hour partition timekey_wait 1m timekey_use_utc true # use utc chunk_limit_size 100m </buffer> <format> @type json </format> </match>
Installing Fluentd using Helm
Once you’ve made the changes mentioned above, use the helm install command mentioned below to install the fluentd in your cluster.
helm install fluentd-es-s3 stable/fluentd --version 2.3.2 -f fluentd-es-s3-values.yaml
Uninstalling Fluentd
helm delete fluentd-es-s3 --purge
fluentd-es-s3-values-2.3.2.yaml
# Default values for fluentd. # This is a YAML-formatted file. # Declare variables to be passed into your templates. replicaCount: 3 image: repository: gcr.io/google-containers/fluentd-elasticsearch tag: v2.4.0 pullPolicy: IfNotPresent # pullSecrets: # - secret1 # - secret2 output: host: <elasticsearch-client>.<namespace> port: 9200 scheme: http sslVersion: TLSv1 buffer_chunk_limit: 2M buffer_queue_limit: 8 env: {} # Extra Environment Values - allows yaml definitions extraEnvVars: # - name: VALUE_FROM_SECRET # valueFrom: # secretKeyRef: # name: secret_name # key: secret_key # extraVolumes: # - name: es-certs # secret: # defaultMode: 420 # secretName: es-certs # extraVolumeMounts: # - name: es-certs # mountPath: /certs # readOnly: true plugins: enabled: true pluginsList: - fluent-plugin-s3 - fluent-plugin-rewrite-tag-filter service: annotations: {} type: ClusterIP # loadBalancerIP: # type: NodePort # nodePort: # Used to create Service records ports: - name: "monitor-agent" protocol: TCP containerPort: 24220 - name: "forward" protocol: TCP containerPort: 24224 metrics: enabled: false service: port: 24231 serviceMonitor: enabled: false additionalLabels: {} # namespace: monitoring # interval: 30s # scrapeTimeout: 10s annotations: {} # prometheus.io/scrape: "true" # prometheus.io/port: "24231" ingress: enabled: false annotations: kubernetes.io/ingress.class: nginx # kubernetes.io/tls-acme: "true" # # Depending on which version of ingress controller you may need to configure properly - https://kubernetes.github.io/ingress-nginx/examples/rewrite/#rewrite-target # nginx.ingress.kubernetes.io/rewrite-target: / labels: [] # If doing TCP or UDP ingress rule don't forget to update your Ingress Controller to accept TCP connections - https://kubernetes.github.io/ingress-nginx/user-guide/exposing-tcp-udp-services/ hosts: # - name: "http-input.local" # protocol: TCP # servicePort: 9880 # path: / tls: {} # Secrets must be manually created in the namespace. # - secretName: http-input-tls # hosts: # - http-input.local configMaps: general.conf: | # Prevent fluentd from handling records containing its own logs. Otherwise # it can lead to an infinite loop, when error in sending one message generates # another message which also fails to be sent and so on. <match fluentd.**> @type null </match> # Used for health checking <source> @type http port 9880 bind 0.0.0.0 </source> # Emits internal metrics to every minute, and also exposes them on port # 24220. Useful for determining if an output plugin is retryring/erroring, # or determining the buffer queue length. <source> @type monitor_agent bind 0.0.0.0 port 24220 tag fluentd.monitor.metrics </source> system.conf: |- <system> root_dir /tmp/fluentd-buffers/ </system> forward-input.conf: | <source> @type forward port 24224 bind 0.0.0.0 </source> output.conf: | <filter kube.**> @type record_transformer enable_ruby <record> kubernetes_tag ${"%s" % [record["kubernetes"]["labels"]["app"] || record["kubernetes"]["labels"]["k8s-app"] || record["kubernetes"]["labels"]["name"] || "unspecified-app-label"]} </record> </filter> <match kube.**> @type rewrite_tag_filter <rule> key kubernetes_tag pattern ^(.+)$ tag $1 </rule> </match> <match **> @type s3 s3_bucket <k8s-logs-bucket> s3_region <ap-southeast-1> s3_object_key_format "${tag}/%{time_slice}-events_%{index}.%{file_extension}" time_slice_format %Y/%m/%d/%H time_slice_wait 10m path test-logs # if you want to use ${tag} or %Y/%m/%d/ like syntax in path / s3_object_key_format, # need to specify tag for ${tag} and time for %Y/%m/%d in <buffer> argument. <buffer tag,time> @type file flush_mode interval flush_interval 30s path /var/log/fluent/s3 timekey 300 # 1 hour partition timekey_wait 1m timekey_use_utc true # use utc chunk_limit_size 100m </buffer> <format> @type json </format> </match> resources: limits: cpu: 500m memory: 512Mi requests: cpu: 500m memory: 512Mi # We usually recommend not to specify default resources and to leave this as a conscious # choice for the user. This also increases chances charts run on environments with little # resources, such as Minikube. If you do want to specify resources, uncomment the following # lines, adjust them as necessary, and remove the curly braces after 'resources:'. # limits: # cpu: 500m # memory: 200Mi # requests: # cpu: 500m # memory: 200Mi rbac: # Specifies whether RBAC resources should be created create: true serviceAccount: # Specifies whether a ServiceAccount should be created create: true # The name of the ServiceAccount to use. # If not set and create is true, a name is generated using the fullname template name: ## Persist data to a persistent volume persistence: enabled: false ## If defined, storageClassName: <storageClass> ## If set to "-", storageClassName: "", which disables dynamic provisioning ## If undefined (the default) or set to null, no storageClassName spec is ## set, choosing the default provisioner. (gp2 on AWS, standard on ## GKE, AWS & OpenStack) ## # storageClass: "-" # annotations: {} accessMode: ReadWriteOnce size: 10Gi nodeSelector: {} tolerations: [] affinity: {} # Enable autoscaling using HorizontalPodAutoscaler autoscaling: enabled: false minReplicas: 2 maxReplicas: 5 metrics: - type: Resource resource: name: cpu target: type: Utilization averageUtilization: 90 - type: Resource resource: name: memory target: type: Utilization averageUtilization: 80 # Consider to set higher value when using in conjuction with autoscaling # Full description about this field: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.15/#pod-v1-core
terminationGracePeriodSeconds: 30
Certified Kubernetes Developer And Service-mesh Ninja
4 年Just thinking why not use something as logDNA which has an agent developed for Kubernetes and once deployed, does the collection + injection of logs directly for operational use and too at a better cost. ????