Personal Protective Equipment (PPE)
Mohammad Anees Qamar
Supervisor HSE at Katerra | NEBOSH Award in Health & Safety | IOSH Managing Safely | OSHA 30-Hour | First Aid Certified.
Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.
The purpose of personal protective equipment is to reduce employee exposure to hazards when engineering controls and administrative controls are not feasible or effective to reduce these risks to acceptable levels. PPE is needed when there are hazards present. PPE has the serious limitation that it does not eliminate the hazard at the source and may result in employees being exposed to the hazard if the equipment fails.
Any item of PPE imposes a barrier between the wearer/user and the working environment. This can create additional strains on the wearer, impair their ability to carry out their work and create significant levels of discomfort. Any of these can discourage wearers from using PPE correctly, therefore placing them at risk of injury, ill-health or, under extreme circumstances, death. Good ergonomic design can help to minimise these barriers and can therefore help to ensure safe and healthy working conditions through the correct use of PPE.
Practices of occupational safety and health can use hazard controls and interventions to mitigate workplace hazards, which pose a threat to the safety and quality of life of workers. The hierarchy of hazard controls provides a policy framework which ranks the types of hazard controls in terms of absolute risk reduction. At the top of the hierarchy are elimination and substitution, which remove the hazard entirely or replace the hazard with a safer alternative. If elimination or substitution measures cannot be applied, engineering controls and administrative controls?– which seek to design safer mechanisms and coach safer human behavior?– are implemented. Personal protective equipment ranks last on the hierarchy of controls, as the workers are regularly exposed to the hazard, with a barrier of protection. The hierarchy of controls is important in acknowledging that, while personal protective equipment has tremendous utility, it is not the desired mechanism of control in terms of worker safety.
History
Early PPE such as body armor, boots and gloves focused on protecting the wearer's body from physical injury. The plague doctors of sixteenth-century Europe also wore protective uniforms consisting of a full-length gown, helmet, glass eye coverings, gloves and boots (see Plague doctor costume) to prevent contagion when dealing with plague victims. These were made of thick material which was then covered in wax to make it water-resistant. A mask with a beak-like structure was filled with pleasant-smelling flowers, herbs and spices to prevent the spread of miasma, the prescientific belief of bad smells which spread disease through the air. In more recent years, scientific personal protective equipment is generally believed to have begun with the cloth facemasks promoted by Wu Lien-teh in the 1910–11 Manchurian pneumonic plague outbreak, although many Western medics doubted the efficacy of facemasks in preventing the spread of disease.
Types
Personal protective equipment can be categorized by the area of the body protected, by the types of hazard, and by the type of garment or accessory. A single item?– for example, boots?– may provide multiple forms of protection: a steel toe cap and steel insoles for protection of the feet from crushing or puncture injuries, impervious rubber and lining for protection from water and chemicals, high reflectivity and heat resistance for protection from radiant heat, and high electrical resistivity for protection from electric shock. The protective attributes of each piece of equipment must be compared with the hazards expected to be found in the workplace. More breathable types of personal protective equipment may not lead to more contamination but do result in greater user satisfaction.
Respirators
Respirators are protective breathing equipment, which protect the user from inhaling contaminants in the air, thus preserving the health of their respiratory tract. There are two main types of respirators. One type of respirator functions by filtering out chemicals and gases, or airborne particles, from the air breathed by the user. The filtration may be either passive or active (powered). Gas masks and particulate respirators (like N95 masks) are examples of this type of respirator. A second type of respirator protects users by providing clean, respirable air from another source. This type includes airline respirators and self-contained breathing apparatus (SCBA).In work environments, respirators are relied upon when adequate ventilation is not available or other engineering control systems are not feasible or inadequate.
In the United Kingdom, an organization that has extensive expertise in respiratory protective equipment is the Institute of Occupational Medicine. This expertise has been built on a long-standing and varied research programme that has included the setting of workplace protection factors to the assessment of efficacy of masks available through high street retail outlets.[citation needed]
The Health and Safety Executive (HSE), NHS Health Scotland and Healthy Working Lives (HWL) have jointly developed the RPE (Respiratory Protective Equipment) Selector Tool, which is web-based. This interactive tool provides descriptions of different types of respirators and breathing apparatuses, as well as "dos and don'ts" for each type.
In the United States, The National Institute for Occupational Safety and Health (NIOSH) provides recommendations on respirator use, in accordance to NIOSH federal respiratory regulations 42 CFR Part 84. The National Personal Protective Technology Laboratory (NPPTL) of NIOSH is tasked towards actively conducting studies on respirators and providing recommendations.
Surgical masks are considered as PPE, but are not considered as respirators, being unable to stop submicron particles from passing through, and also having unrestricted air flow at the edges of the masks.
Skin protection
Occupational skin diseases such as contact dermatitis, skin cancers, and other skin injuries and infections are the second-most common type of occupational disease and can be very costly. Skin hazards, which lead to occupational skin disease, can be classified into four groups. Chemical agents can come into contact with the skin through direct contact with contaminated surfaces, deposition of aerosols, immersion or splashes. Physical agents such as extreme temperatures and ultraviolet or solar radiation can be damaging to the skin over prolonged exposure. Mechanical trauma occurs in the form of friction, pressure, abrasions, lacerations and contusions. Biological agents such as parasites, microorganisms, plants and animals can have varied effects when exposed to the skin.
Any form of PPE that acts as a barrier between the skin and the agent of exposure can be considered skin protection. Because much work is done with the hands, gloves are an essential item in providing skin protection. Some examples of gloves commonly used as PPE include rubber gloves, cut-resistant gloves, chainsaw gloves and heat-resistant gloves. For sports and other recreational activities, many different gloves are used for protection, generally against mechanical trauma.
Other than gloves, any other article of clothing or protection worn for a purpose serve to protect the skin. Lab coats for example, are worn to protect against potential splashes of chemicals. Face shields serve to protect one's face from potential impact hazards, chemical splashes or possible infectious fluid.
Many migrant workers need training in PPE for Heat Related Illnesses prevention (HRI). Based on study results, research identified some potential gaps in heat safety education. While some farm workers reported receiving limited training on pesticide safety, others did not. This could be remedied by incoming groups of farm workers receiving video and in-person training on HRI prevention. These educational programs for farm workers are most effective when they are based on health behavior theories, use adult learning principles and employ train-the-trainer approaches.
Eye protection
Each day, about 2,000 US workers have a job-related eye injury that requires medical attention. Eye injuries can happen through a variety of means. Most eye injuries occur when solid particles such as metal slivers, wood chips, sand or cement chips get into the eye. Smaller particles in smokes and larger particles such as broken glass also account for particulate matter-causing eye injuries. Blunt force trauma can occur to the eye when excessive force comes into contact with the eye. Chemical burns, biological agents, and thermal agents, from sources such as welding torches and UV light, also contribute to occupational eye injury.
While the required eye protection varies by occupation, the safety provided can be generalized. Safety glasses provide protection from external debris, and should provide side protection via a wrap-around design or side shields.
Protective clothing and ensembles
This form of PPE is all-encompassing and refers to the various suits and uniforms worn to protect the user from harm. Lab coats worn by scientists and ballistic vests worn by law enforcement officials, which are worn on a regular basis, would fall into this category. Entire sets of PPE, worn together in a combined suit, are also in this category.
领英推荐
Ensembles
Below are some examples of ensembles of personal protective equipment, worn together for a specific occupation or task, to provide maximum protection for the user:
In sports
Participants in sports often wear protective equipment. Studies performed on the injuries of professional athletes, such as that on NFL players, question the effectiveness of existing personal protective equipment.
Limits of the definition
The definition of what constitutes personal protective equipment varies by country. In the United States, the laws regarding PPE also vary by state. In 2011, workplace safety complaints were brought against Hustler and other adult film production companies by the AIDS Healthcare Foundation, leading to several citations brought by Cal/OSHA. The failure to use condoms by adult film stars was a violation of Cal/OSHA's Blood borne Pathogens Program, Personal Protective Equipment. This example shows that personal protective equipment can cover a variety of occupations in the United States, and has a wide-ranging definition.
Occupational hazards
Physical
Chemical
Biological
Psychosocial
Hierarchy of hazard controls
Elimination
Substitution
Engineering controls
Administrative controls
Personal protective equipment
Prevention through design
Occupational hygiene
Occupational exposure limit
Exposure assessment
Workplace exposure monitoring
Study
Occupational toxicology
Occupational epidemiology
Workplace health surveillance