Perceptions and expectations of ChatGPT
University of Malta

Perceptions and expectations of ChatGPT

Featuring an excerpt and a few snippets from one of my latest articles related to Generative Artificial Intelligence (AI).

Suggested Citation: Camilleri, M.A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework,?Technological Forecasting and Social Change,?https://doi.org/10.1016/j.techfore.2024.123247


The introduction

Artificial intelligence (AI) chatbots utilize algorithms that are trained to process and analyze vast amounts of data by using techniques ranging from rule-based approaches to statistical models and deep learning, to generate natural text, to respond to online users, based on the input they received (OECD, 2023). For instance, Open AI‘s Chat Generative Pre-Trained Transformer (ChatGPT) is one of the most popular AI-powered chatbots. The company claims that ChatGPT “is designed to assist with a wide range of tasks, from answering questions to generating text in various styles and formats” (OpenAI, 2023a). OpenAI clarifies that its GPT-3.5, is a free-to-use language model that was optimized for dialogue by using Reinforcement Learning with Human Feedback (RLHF) – a method that relies on human demonstrations and preference comparisons to guide the model toward desired behaviors. Its models are trained on vast amounts of data including conversations that were created by humans (such content is accessed through the Internet). The responses it provides appear to be as human-like as possible (Jiang et al., 2023).

GPT-3.5’s database was last updated in September 2021. However, GPT-4.0 version comes with a paid plan that is more creative than GPT-3.5, could accept images as inputs, can generate captions, classifications and analyses (Qureshi et al., 2023). Its developers assert that GPT-4.0 can create better content including extended conversations, as well as document search and analysis (Takefuji, 2023). Recently, its proponents noted that ChatGPT can be utilized for academic purposes, including research. It can extract and paraphrase information, translate text, grade tests, and/or it may be used for conversation purposes (MIT, 2023). Various stakeholders in education noted that this LLM tool may be able to provide quick and easy answers to questions.

However, earlier this year, several higher educational institutions issued statements that warned students against using ChatGPT for academic purposes. In a similar vein, a number of schools banned ChatGPT from their networks and devices (Rudolph et al., 2023). Evidently, policy makers were concerned that this text generating AI system could disseminate misinformation and even promote plagiarism. Some commentators argue that it can affect the students’ critical-thinking and problem-solving abilities. Such skill sets are essential aspects for their academic and lifelong successes (Liebrenz et al., 2023;?Thorp, 2023). Nevertheless, a number of jurisdictions are reversing their decisions that impede students from using this technology (Reuters, 2023). In many cases, educational leaders are realizing that their students could benefit from this innovation, if they are properly taught how to adopt it as a tool for their learning journey.

Academic colleagues are increasingly raising awareness on different uses of AI dialogue systems like service chatbots and/or virtual assistants (Baabdullah et al., 2022;?Balakrishnan et al., 2022;?Brachten et al., 2021;?Hari et al., 2022;?Li et al., 2021;?Lou et al., 2022;?Malodia et al., 2021;?Sharma et al., 2022). Some of them are evaluating their strengths and weaknesses, including of OpenAI’s ChatGPT (Farrokhnia et al., 2023;?Kasneci et al., 2023). Very often, they argue that there may be instances where the chatbots’ prompts are not completely accurate and/or may not fully address the questions that are asked to them (Gill et al., 2024). This may be due to different reasons. For example, GPT-3.5’s responses are based on the data that were uploaded before a knowledge cut-off date (i.e. September 2021). This can have a negative effect on the quality of its replies, as the algorithm is not up to date with the latest developments. Although, at the moment, there is a knowledge gap and a few grey areas on the use of AI chatbots that use natural language processing to create humanlike conversational dialogue, currently, there are still a few contributions that have critically evaluated their pros and cons, and even less studies have investigated the factors affecting the individuals’ engagement levels with ChatGPT.

This empirical research builds on theoretical underpinnings related to information technology adoption in order to examine the online users’ perceptions and intentions to use AI Chatbots. Specifically, it integrates a perceived interactivity construct (Baabdullah et al., 2022;?McMillan and Hwang, 2002) with information quality and source trustworthiness measures (Leong et al., 2021;?Sussman and Siegal, 2003) from the Information Adoption Model (IAM) with performance expectancy, effort expectancy and social influences constructs (Venkatesh et al., 2003;?Venkatesh et al., 2012) from the Unified Theory of Acceptance and Use of Technology (UTAUT1/UTAUT2) to determine which factors are influencing the individuals’ intentions to use AI text generation systems like ChatGPT. This study’s focused research questions are:

RQ1

How and to what extent are information quality and source trustworthiness influencing the online users’ performance expectancy from ChatGPT?

RQ2

How and to what extent are their perceptions about ChatGPT’s interactivity, performance expectancy, effort expectancy, as well as their social influences affecting their intentions to continue using their large language models?

RQ3

How and to what degree is the performance expectancy construct mediating effort expectancy – intentions to use these interactive AI technologies?

This study hypothesizes that information quality and source trustworthiness are significant antecedents of performance expectancy. It presumes that this latter construct, together with effort expectancy, social influences as well as perceived interactivity affect the online users’ acceptance and usage of generative pre-trained AI chatbots like GPT-3.5 or GPT-4.

Many academic researchers sought to explore the individuals’ behavioral intentions to use a wide array of technologies (Alalwan, 2020;?Alam et al., 2020;?Al-Saedi et al., 2020;?Raza et al., 2021;?Tam et al., 2020). Very often, they utilized measures from the Theory of Reasoned Action (TRA) (Fishbein and Ajzen, 1975), the?Theory of Planned Behavior?(TPB) (Ajzen, 1991), the Technology Acceptance Model (TAM) (Davis, 1989;?Davis et al., 1989), TAM2 (Venkatesh and Davis, 2000), TAM3 (Venkatesh and Bala, 2008), UTAUT (Venkatesh et al., 2003) or UTAUT2 (Venkatesh et al., 2012). Few scholars have integrated constructs like UTAUT/UTAUT2’s performance expectancy, effort expectancy, social influences and intentions to use technologies with information quality and source trust measures from the Elaboration Likelihood Model (ELM) and IAM. Currently, there is still limited research that incorporates a perceived interactivity factor within information technology frameworks. Therefore, this contribution addresses this deficit in academic knowledge.

Notwithstanding, for the time being, there is still scant research that is focused on AI-powered LLM, like ChatGPT, that are capable of generating human-like text that is based on previous contexts and drawn from past conversations. This timely study raises awareness on the individuals’ perceptions about the utilitarian value of such interactive technologies, in an academic (higher educational) context. It clearly identifies the factors that are influencing the individuals’ intentions to continue using them, in the future.


From the literature review

Table 1?features a summary of the most popular theoretical frameworks that sought to identify the antecedents and the extent to which they may affect the individuals’ intentions to use information technologies.

Table 1. A non-exhaustive list of theoretical frameworks focused on (information) technology adoption behaviors

(Camilleri, 2024).

Figure 1. features the conceptual framework that investigates information technology adoption factors. It represents a visual illustration of the hypotheses of this study. In sum, this empirical research presumes that information quality and source trustworthiness (from Information Adoption Model) precede performance expectancy. The latter construct together with effort expectancy, social influences (from Unified Theory of Acceptance and Use of Technology) as well as the perceived interactivity construct, are significant antecedents of the individuals’ intentions to use ChatGPT.

Camilleri (2024).

The survey instrument

The respondents were instructed to answer all survey questions that were presented to them about information quality, source trustworthiness, performance expectancy, effort expectancy, social influences, perceived interactivity and on their behavioral intentions to continue using this technology (otherwise, they could not submit the questionnaire). Table 2 features the list of measures as well as their corresponding items that were utilized in this study. It also provides a definition of the constructs used in the proposed information technology acceptance framework.

Table 2. The list of measures and the corresponding items used in this research.

Camilleri (2024).

Theoretical implications

This research sought to explore the factors that are affecting the individuals’ intentions to use ChatGPT. It examined the online users’ effort and performance expectancy, social influences as well as their perceptions about the information quality, source trustworthiness and interactivity of generative text AI chatbots. The empirical investigation hypothesized that performance expectancy, effort expectancy and social influences from Venkatesh et al.’s (2003) UTAUT together with a perceived interactivity construct (McMillan and Hwang, 2002) were significant antecedents of their intentions to revisit ChatGPT’s website and/or to use its app. Moreover, it presumed that information quality and source trustworthiness measures from Sussman and Siegal’s (2003) IAM were found to be the precursors of performance expectancy.

The results from this study report that source trustworthiness-performance expectancy is the most significant path in this research model. They confirm that online users indicated that they believed that there is a connection between the source’s trustworthiness in terms of its dependability, and the degree to which they believe that using such an AI generative system will help them improve their job performance. Similar effects were also evidenced in previous IAM theoretical frameworks (Kang and Namkung, 2019; Onofrei et al., 2022), as well as in a number of studies related to TAM (Assaker, 2020; Chen and Aklikokou, 2020; Shahzad et al., 2018) and/or to UTAUT/UTAUT2 (Lallmahomed et al., 2017).

In addition, this research also reports that the users’ peceptions about information quality significantly affects their performance expectancy/expectancies from ChatGPT. Yet, in this case, this link was weaker than the former, thus implying that the respondents’ perceptions about the usefulness of this text generative technology were clearly influenced by the peripheral cues of communication (Cacioppo and Petty, 1981; Shi et al., 2018; Sussman and Siegal, 2003; Tien et al., 2019).

Very often, academic colleagues noted that individuals would probably rely on the information that is presented to them, if they perceive that the sources and/or their content are trustworthy (Bingham et al., 2019; John and De’Villiers, 2020; Winter, 2020). Frequently, they indicated that source trustworthiness would likely affect their beliefs about the usefulness of information technologies, as they enable them to enhance their performance. Conversely, some commentators argued that there may be users that could be skeptical and wary about using new technologies, especially if they are unfamiliar with them (Shankar et al., 2021). They noted that such individuals may be concerned about the reliability and trustworthiness of the latest technologies.

The findings suggest that the individuals’ perceptions about the interactivity of ChatGPT are a precursor of their intentions to use it. This link is also highly significant. Therefore, the online users were somehow appreciating this information technology’s responsiveness to their prompts (in terms of its computer-human communications). Evidently, ChatGPT’s interactivity attributes are having an impact on the individuals’ readiness to engage with it, and to seek answers to their questions. Similar results were reported in other studies that analyzed how the interactivity and anthropomorphic features of dialogue systems like live support chatbots, or virtual assistants can influence the online users’ willingness to continue utilizing them in the future (Baabdullah et al., 2022; Balakrishnan et al., 2022; Brachten et al., 2021; Liew et al., 2017).

There are a number of academic contributions that sought to explore how, why, where and when individuals are lured by interactive communication technologies (e.g. Hari et al., 2022; Li et al., 2021; Lou et al., 2022). Generally, these researchers posited that users are habituated with information systems that are programed to engage with them in a dynamic and responsive manner. Very often they indicated that many individuals are favorably disposed to use dialogue systems that are capable of providing them with instant feedback and personalized content. Several colleagues suggest that positive user experiences as well as high satisfaction levels and enjoyment, could enhance their connection with information technologies, and will probably motivate them to continue using them in the future (Ashfaq et al., 2020; Camilleri and Falzon, 2021; Huang and Chueh, 2021; Wolfinbarger and Gilly, 2003).

Another important finding from this research is that the individuals’ social influences (from family, friends or colleagues) are affecting their interactions with ChatGPT. Again, this causal path is also very significant. Similar results were also reported in UTAUT/UTAUT2 studies that are focused on the link between social influences and its link with intentional behaviors to use technologies (Gursoy et al., 2019; Patil et al., 2020). In addition, TPB/TRA researchers found that subjective norms also predict behavioral intentions (Driediger and Bhatiasevi, 2019; Sohn and Kwon, 2020). This is in stark contract with other studies that reported that there was no significant relationship between social influences/subjective norms and behavioral intentions (Ho et al., 2020; Kamble et al., 2019).

Interestingly, the results report that there are highly significant effects between effort expectancy (i.e. ease of use of the generative AI technology) and performance expectancy (i.e. its perceived usefulness). Many scholars posit that perceived ease of use is a significant driver of perceived usefulness of technology (Bressolles et al., 2014; Davis, 1989; Davis et al., 1989; Kamble et al., 2019; Yoo and Donthu, 2001). Furthermore, there are significant causal paths between performance expectancy-intentions to use ChatGPT and even between effort expectancy-intentions to use ChatGPT, albeit to a lesser extent. Yet, this research indicates that performance expectancy partially mediates effort expectancy-intentions to use ChatGPT. In this case, this link is highly significant.

In sum, this contribution validates key information technology measures, specifically, performance expectancy, effort expectancy, social influences and behavioral intentions from UTAUT/UTAUT2, as well as information quality and source trustworthiness from ELM/IAM and integrates them with a perceived interactivity factor. It builds on previous theoretical underpinnings. Yet, it differentiates itself from previous studies. To date, there are no other empirical investigations that have combined the same constructs that are presented in this article. Notwithstanding, this research puts forward a robust Information Technology Acceptance Framework. The results confirm the reliability and validity of the measures. They clearly outline the relative strength and significance of the causal paths that are predicting the individuals’ intentions to use ChatGPT.


Managerial implications

This empirical study provides a snapshot on the online users’ perceptions about ChatGPT’s responses to verbal queries, and sheds light on their dispositions to avail themselves from its natural language processing. It explores their performance expectations about their usefulness and their effort expectations related to the ease of use of these information technologies and investigates whether they are affected by colleagues or by other social influences to use such dialogue systems. Moreover, it examines their insights about the content quality, source trustworthiness as well as on the interactivity features of these text- generative AI models.

Generally, the results suggest that the research participants felt that these algorithms are easy to use. The findings indicate that they consider them to be useful too, specifically when the information they generate is trustworthy and dependable. The respondents suggest that they are concerned about the quality and accuracy of the content that is featured in the AI chatbots’ answers. This contingent issue can have a negative effect on the use of the information that is created by online dialogue systems.

OpenAI’s ChatGPT is a case in point. Its app is freely available in many countries, via desktop and mobile technologies including iOS and Android. The company admits that its GPT-3.5 outputs may be inaccurate, untruthful, and misleading at times. It clarifies that its algorithm is not connected to the internet, and that it can occasionally produce incorrect answers (OpenAI, 2023a). It posits that GPT-3.5 has limited knowledge of the world and events after 2021 and may also occasionally produce harmful instructions or biased content. OpenAI recommends checking whether its chatbot’s responses are accurate or not, and to let them know when and if it answers in an incorrect manner, by using their “Thumbs Down” button. They even declare that their ChatGPT’s Help Center can occasionally make up facts or “hallucinate” outputs (OpenAI, 2023a,b).

OpenAI reports that its top notch ChatGPT Plus subscribers can access safer and more useful responses. In this case, users can avail themselves from a number of beta plugins and resources that can offer a wide range of capabilities including text-to-speech applications as well as web browsing features through Bing. Yet again, OpenAI (2023b) indicates that its GPT-4 still has many known limitations that the company is working to address, such as “social biases and adversarial prompts” (at the time of writing this article). Evidently, works are still in progress at OpenAI. The company needs to resolve these serious issues, considering that its Content Policy and Terms clearly stipulate that OpenAI’s consumers are the owners of the output that is created by ChatGPT. Hence, ChatGPT’s users have the right to reprint, sell, and merchandise the content that is generated for them through OpenAI’s platforms, regardless of whether the output (its response) was provided via a free or a paid plan.

Various commentators are increasingly raising awareness about the corporate digital responsibilities of those involved in the research, development and maintenance of such dialogue systems. A number of stakeholders, particularly the regulatory ones, are concerned on possible risks and perils arising from AI algorithms including interactive chatbots. In many cases, they are warning that disruptive chatbots could disseminate misinformation, foster prejudice, bias and discrimination, raise privacy concerns, and could lead to the loss of jobs. Arguably, one has to bear in mind that, in many cases, many governments are outpaced by the proliferation of technological innovations (as their development happens before the enactment of legislation). As a result, they tend to be reactive in the implementation of substantive regulatory interventions. This research reported that the development of ChatGPT has resulted in mixed reactions among different stakeholders in society, especially during the first months after its official launch. At the moment, there are just a few jurisdictions that have formalized policies and governance frameworks that are meant to protect and safeguard individuals and entities from possible risks and dangers of AI technologies (Camilleri, 2023). Of course, voluntary principles and guidelines are a step in the right direction. However, policy makers are expected by various stakeholders to step-up their commitment by introducing quasi-regulations and legislation.

Currently, a number of technology conglomerates including Microsoft-backed OpenAI, Apple and IBM, among others, anticipated the governments’ regulations by joining forces in a non-profit organization entitled, “Partnership for AI” that aims to advance safe, responsible AI, that is rooted in open innovation. In addition, IBM has also teamed up with Meta and other companies, startups, universities, research and government organizations, as well as non-profit foundations to form an “AI Alliance”, that is intended to foster innovations across all aspects of AI technology, applications and governance.

This full (open-access) article is also available through:

ResearchGate: https://www.researchgate.net/publication/377997764_Factors_affecting_performance_expectancy_and_intentions_to_use_ChatGPT_Using_SmartPLS_to_advance_an_information_technology_acceptance_framework

Academia.edu: https://www.academia.edu/114552483/Factors_affecting_performance_expectancy_and_intentions_to_use_ChatGPT_Using_SmartPLS_to_advance_an_information_technology_acceptance_framework

Social Sciences Research Network: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4718608

University of Malta Open Access Repository: https://www.um.edu.mt/library/oar/handle/123456789/118251

Congratulations on your publication! Understanding user perceptions of ChatGPT is crucial in shaping its future applications. As an IP law firm, we're always interested in the ethical implications of AI technologies like ChatGPT. Looking forward to reading your insights!

回复
Woodley B. Preucil, CFA

Senior Managing Director

6 个月

Mark Anthony Camilleri, Ph.D. Very insightful. Thank you for sharing

回复
Godwin Josh

Co-Founder of Altrosyn and DIrector at CDTECH | Inventor | Manufacturer

6 个月

Your exploration of online users' perceptions and expectations of ChatGPT sheds light on crucial aspects of human-AI interaction. Understanding these dynamics is pivotal for refining AI systems to better serve user needs. However, in the context of evolving technologies, how do you propose addressing the challenge of maintaining user trust and ensuring the continued relevance and accuracy of AI-generated responses over time? Moreover, considering the diverse range of applications for ChatGPT, how would you approach adapting the model to support highly specialized domains such as medical diagnosis or legal documentation, where precision and domain-specific knowledge are paramount?

Stanley Russel

??? Engineer & Manufacturer ?? | Internet Bonding routers to Video Servers | Network equipment production | ISP Independent IP address provider | Customized Packet level Encryption & Security ?? | On-premises Cloud ?

6 个月

Congratulations on your contribution being accepted for publication! Exploring users' perceptions and expectations of ChatGPT offers valuable insights into the evolving landscape of AI-driven dialogue systems. Understanding how users interact with and anticipate the capabilities of such technology is crucial for further advancements in artificial intelligence. Your research promises to shed light on the user experience and inform future developments in this exciting field. How do you anticipate your findings will influence the design and implementation of ChatGPT and similar dialogue systems in the future?

要查看或添加评论,请登录

社区洞察

其他会员也浏览了