Secrets of Successful Thin-Wall Molding!
Bessy -TWT
Export plastic mold/Plastique et moule/Plastikformen/???? ?? | Medical & Precision Parts
Machinery considerations
Standard molding machinery can be used for many thin-wall applications. Capabilities built into newer standard machines go well beyond those of 10 years ago. Advances in materials, gating technology, and design further expand the capabilities of a standard machine to fill thinner parts.
But as wall thicknesses continue to shrink, a more specialized press with higher speed and pressure capabilities may be required. For example, with a portable electronics part less than 1 mm thick, fill times of less than 0.5 sec and injection pressures greater than 30,000 psi are not uncommon. Hydraulic machines designed for thin-wall molding frequently have accumulators driving both injection and clamping cycles. All-electric and hybrid electric/hydraulic models with high speed and pressure capabilities are starting to appear as well.
To stand up to the high pressures involved, clamp force should be a minimum of 5-7 tons/sq in. of projected area. In addition, extra-heavy platens help to reduce flexure as wall thicknesses drop and injection pressures rise. Thin-wall machines commonly have a 2:1 or lower ratio of tiebar distance to platen thickness. Also, with thinner walls, closed-loop control of injection speed, transfer pressure, and other process variables can help to control filling and packing at high speeds and pressures.
When it comes to shot capacity, large barrels tend to be too large. We suggest you aim for a shot size of 40% to 70% of barrel capacity. The greatly reduced total cycle time seen in thin-wall applications may make it possible to reduce the minimum shot size to 20%-30% of barrel capacity, but only if the parts are thoroughly tested for property loss due to possible material degradation. Users must be careful, as small shot sizes can mean longer barrel residence times for the material, resulting in property degradation.
Here are some more tips on tool design for thin walls:
领英推荐
In addition, cooling of the cores and cavities is more critical and challenging in thin-wall applications. Two important guidelines are:
1. Non-looping cooling lines should usually be located directly in the core and cavity blocks to help keep the mold surface temperature as consistent as possible.
2. Instead of decreasing coolant temperature to maintain the desired steel temperature, it is generally better to increase the amount of coolant flow through the tool. As a rule of thumb, the difference in temperature between the delivery coolant and return coolant should be no more than 5° to 10°F.