Operationalizing AI

Operationalizing AI

This post was featured in our Cognilytica Newsletter, with additional details. Didn’t get the newsletter? Sign up here

When AI practitioners talk about taking their machine learning models and deploying them into real-world environments, they don’t call it deployment. Instead the term that’s used in the industry is “operationalizing”. This might be confusing for traditional IT operations managers and applications developers. Why don’t we deploy or put into production AI models? What does AI operationalization mean and how is it different from the typical application development and IT systems deployment?

The “Inference” Phase of AI Projects and the Diversity of Application

One of the unique things about an AI project versus a traditional application development project is that there isn’t the same build / test / deploy / manage order of operations. Rather there are two distinct phases of operation: a “training” phase and an “inference” phase. The training phase involves the selection of one or more machine learning algorithms, the identification and selection of appropriate, clean, well-labeled data, the application of the data to the algorithm along with hyperparameter configurations to create an ML model, and then the validation and testing of that model to make sure that it can generalize properly without too much overfitting of training data or underfitting for generalization. All of those steps comprise just the training phase of an AI project.

On the other hand, the inference phase of an AI project focuses on the application of the ML model to the particular use case, ongoing evaluation to determine if the system is generalizing properly to real-world data, and adjustments to the model, development of new training set data, and hyperparameter configurations to iteratively improve the model. The inference phase can also be used to determine if there are additional use cases for the ML model that are broader than originally specified with the training data. In essence, the training phase happens in the organizational “laboratory” and the inference phase happens in the “real world”.

But the real world is where things get messy and complicated. First of all, as we hinted in our previous newsletter, there’s no such thing as a single platform for machine learning. The universal machine learning / AI platform doesn’t exist because there are so many diverse places in which we can use an ML model to make inferences, do classification, predict values, and all the other problems we are looking for ML systems to solve. We could be using an ML model in an Internet of Things (IoT) device deployed at the edge, or in a mobile application that can operate disconnected from the internet, or in a cloud-based always-on setting, or in a large enterprise server system with private, highly regulated, or classified content, or in desktop applications, or in autonomous vehicles, or in distributed applications, or… you get the picture. Any place where the power of cognitive technology is needed is a place where these AI systems can be used.

This is both empowering and challenging. The data scientist developing the ML model might not have any expectations for how and where the ML model will be used, and so instead of “deploying” this model to a specific system, it needs to be “operationalized” in as many different systems, interfaces, and deployments as necessary. The very same model could be deployed in an IoT driver update as well as a cloud service API call. As far as the data scientists and data engineers are concerned, this is not a problem at all. The specifics of deployment are specific to the platforms on which the ML model will be used. But the requirements for the real-world usage and operation (hence the word “operationalization”) of the model are the same regardless of the specific application or deployment.

Requirements for AI Operationalization

Many of the early cognitive technology projects were indeed laboratory-style “experiments” that aimed to identify areas where AI could potentially help, but were never put into production. Many of these efforts were small-scale experiments run by data science organizations. However, to provide real value for the organization, these experiments need to move out of the laboratory and be real, reliable production models. This means that the tools used by data scientists for laboratory-style experiments are not really appropriate for real-world operations.

READ MORE…

要查看或添加评论,请登录

Ron Schmelzer的更多文章

  • The Five Ways To Build Machine Learning Models

    The Five Ways To Build Machine Learning Models

    Machine learning is powering most of the recent advancements in AI, including computer vision, natural language…

    3 条评论
  • Do You Really Need A Chief AI Officer (CAIO)?

    Do You Really Need A Chief AI Officer (CAIO)?

    Every time a new technology comes to the fore, there’s temptation to shift the management team. Read Ronald Schmelzer’s…

    3 条评论
  • There’s No Such Thing As The Machine Learning Platform

    There’s No Such Thing As The Machine Learning Platform

    Vendors are racing to create the dominant machine learning platform. But the concept of the machine learning platform…

  • Is Machine Learning Really AI? (Pt. II)

    Is Machine Learning Really AI? (Pt. II)

    Continuing a previous article, Ronald Schmelzer explores in a Forbes article whether or not many machine learning…

  • Is Machine Learning Really AI?

    Is Machine Learning Really AI?

    For sure, machine learning is the cornerstone of what's powering the most recent wave of artificial intelligence…

    1 条评论
  • Automation is Not Intelligence

    Automation is Not Intelligence

    There’s so much hype around AI that even dumb automatons are being presented as intelligence. Read Ronald Schmelzer’s…

    2 条评论
  • Should We Be Scared of AI?

    Should We Be Scared of AI?

    Check out Ronald Schmelzer’s article in Forbes concerning people’s fears surrounding AI: Recently major names in the…

  • AI and Blockchain — Double the Hype or Double the Value?

    AI and Blockchain — Double the Hype or Double the Value?

    AI and Blockchain both are topics covered often with breathless hype. Read Ronald Schmelzer’s article in Forbes…

  • A Glimpse into the AI-Enabled Future

    A Glimpse into the AI-Enabled Future

    Where is AI heading in the future? Read Ronald Schmelzer’s article in Forbes talking about the vision for the…

  • Learn how the St. Louis Blues are using Facebook chatbots to increase fan engagement

    Learn how the St. Louis Blues are using Facebook chatbots to increase fan engagement

    Read Ronald Schmelzer’s article in Forbes detailing how the St. Louis Blues are using Facebook chatbots to increase fan…

社区洞察

其他会员也浏览了