Numpy Cheatsheet
Hasanul Banna Himel
Beta MLSA | Postman student expert | Prev SWE Fellow @Headstarter
Numpy :
Numpy is a python library which is used to perform wide variety of mathematical operations on array.
The question now arises as to why we require NumPy when we have lists and can execute these operations directly in Python ?. ?? So, the answer is that NumPy intends to deliver an array object that is up to 50 times faster than typical Python lists or Python operations. ??
Where it used ? NumPy ?? enables efficient numerical computing and array operations in :
Basics of NumPy:
How to install :
pip install numpy
How to import :
import numpy as np
Creating NumPy Array :
arr = np.array([1, 2, 3, 4])
Change DataType of Array :
arr = np.array([1,2,3],dtype=float)
Creating 2-Dimensional Array :
arr = np.array([(1,2,3,4),(7,8,9,10)],dtype=int)
Dummy Arrays Creation :
Creating Dummy array of zeroes(2x3 matrix) :
arr = np.zeros((2,3))
Creating Dummy Array of Specific Number : Here (3,4) refers to (rows x columns) with all values of 3.
arr = np.full((3,4),3)
Creating Dummy arrays of ones (3x4 matrix):
arr = np.ones((3,4))
Creating array of 0 with 1 on diagonal (4x4 matrix) :
arr = np.eye(4)
Creating matrix of (3x5 matrix) random number:
arr = np.random.rand(3,5)
领英推荐
Properties of Arrays :
Arithmetic Operations
Assume a and b are array or matrices. Addition:
np.add(a,b)
Subtraction
np.subtract(a,b)
Division :
np.divide(a,b)
Multiply :
np.multiply(a,b)
Exponential:
np.exp(a)
Square root :
np.sqrt(a)
Logarithm :
np.log(a)
Dot Product :
a.dot(b)
Important In-built functions
Creating Copy of Array :
arr_two = arr_one.copy()
Sorting of an Array :
sorted_arr = arr.sort()
Transpose of an Array :
t = np.transpose(a)
Need Help ?
np.info(np.ndarray.dtype)
That's all in this blog.Feel free to add more useful methods to this cheatsheet! ???