Novel Advancement in Timber-Plywood-Concrete Composite System: A Development Led by Seoul National University
Led by Professor Jung-Kwon OH, researchers from Seoul National University have pioneered an advanced Timber-Plywood-Concrete (TPC) Composite Nail-Laminated Timber (NLT) system, deriving inspiration from an NLT project undertaken by Canada Wood Korea in Jinju City in 2021. This emergent TPC NLT system integrate the application of nail-laminated timber (NLT), plywood, and concrete to engineer a composite slab, primarily targeting enhanced flooring applications.
The methodology entailed in this system involves the alternate nail-lamination of lumber and plywood, which is subsequently topped with concrete. Nail-laminated timber has already been recognized as a viable replacement for traditional concrete and CLT slabs and steel decking across a diverse array of building genres including commercial, institutional, and residential structures.
Transitioning beyond the conventional NLT paradigm, the TPC NLT system facilitates extended spans, reduced deflections, augmented vibration performance, and more streamlined structures. This progression is in congruence with the broader objectives of sustainable architecture and cost-efficiency. The versatility of the system is further manifested in the optionality of the concrete slab casting, which can either be executed on-site or precast in a controlled setting, with on-site pours generally being preferred.
领英推荐
Under the aegis of Seoul National University, a key partner of Canada Wood Korea, the forthcoming phase of this research endeavor aims to investigate the horizontal diaphragm performance and the incorporation of sprinkler systems within the cavity of the TPC composite slabs, in addition to verifying its fire resistance capability. The project proposal has been submitted to the Korean Forest Service for evaluation.
This novel system presents the opportunity for the expanded utilization of wood in larger and taller constructions, realms traditionally monopolized by concrete and steel. Further research is required to comprehend the seismic and fire resilience of this system and improve the manufacturing and installation of the system.
To learn more about this system, please visit: https://www.woodj.org/archive/view_article?pid=wood-50-5-301
Assistant General Manager | Regional Head - North East | India | Driving Value, Ethics, and Growth in the Building Material Industry | Ex Toshali | Ex Dalmia | Ex Maha | Ex Toshali | Ex BAGIC | Ex ICICI
9 个月A
Managing Director Manufacture Film Faced Plywood, Commercial Plywood, Laminate Plywood *BUILD THE TRUST, GET SUCCESS*
9 个月Using low-quality film-faced plywood for formwork in construction can lead to several problems: 1. *Poor Durability*: Low-quality plywood may not withstand the weight and pressure of the concrete during pouring and curing, leading to premature failure or collapse of the formwork. ? 2. *Surface Defects*: Inferior plywood may have surface defects such as warping, delamination, or roughness, which can affect the quality and finish of the concrete surface. ? 3. *Water Damage*: If the plywood lacks proper water-resistant properties, it can absorb moisture from the concrete or the environment, leading to swelling, warping, and ultimately structural instability. ? 4. *Short Lifespan*: Low-quality plywood tends to have a shorter lifespan, requiring frequent replacement and increasing overall construction costs. ? 5. *Safety Hazards*: Weak or deteriorating formwork poses a safety risk to workers on the construction site, as it may collapse unexpectedly during concrete pouring or curing. ? To avoid these issues, it's crucial to invest in high-quality film-faced plywood specifically designed for formwork applications. This ensures structural integrity, durability, and safety throughout the construction?process. ?