The most incredible technology you've never?seen

The most incredible technology you've never?seen

There’s money to be made and lives to be saved with the tiny stuff that’s all around us.

Saving the world (or some subset of people in it) is in vogue among the world’s wealthiest.

Jeff Bezos has a rocket company, Blue Origin. Bezos believes our future is extraterrestrial, and his rocket company exists because he thinks the price for getting anything off this rock is too damn high.

Bezos is not alone. Elon Musk is also building huge, reusable rockets. He wants to see humans fly to Mars, initially on a lark but eventually for forever.

This type of long-term thinking about the future of our species coupled with serious investment is important. But Bezos and Musk (and most other investors) are missing the most significant — and smallest — technological opportunity to save humanity.

No one has captured this tech blindspot better than my friend and Ginkgo Bioworks Co-Founder Jason Kelly. He did it by showing an image like this:

“What’s the most advanced piece of technology you see on this desk?,” Kelly asked his audience. The correct answer is in green.

A $4 houseplant is one of the most astonishing objects ever assembled. It’s a biodegradable, carbon-capturing, self-replicating, solar-powered work of art. Have you ever bought an electronic gadget that even comes close?

The mind-bending fact that a common shrub is more advanced than the latest MacBook Pro is overlooked by almost everyone. We fail to see it for a simple reason: the coolest parts of a plant can’t be seen. Not with the naked eye, at least.

It’s at the molecular level that plants fix CO2, soak up sunlight and churn out nutrients that we can eat. Way down at the level of atoms and molecules, the most mundane living objects are doing things that our best engineers can only dream of.

Small solutions to big problems

Humanity faces enormous, imminent challenges. The way we use energy is poisoning the planet, we are on track to use up many of our most important non-renewable resources, and we are ill prepared for the next inevitable global pandemic. And that’s just a small sampling of the challenges we see coming; there are dozens more around corners we can’t see around.

Major advances in deep tech — the marriage of hard sciences and emerging technology — is going to be critical if humanity is to survive these challenges and thrive, but most of the money in the world is maintained or managed by people who do not have formal scientific training. For example, just 5% of the Forbes richest 400 people have formal scientific training. Most therefore invest in things they’re familiar with, like real estate, software and finance.

I founded OS Fund to support the scientists entrepreneurs bringing deep tech to market; leveraging hard sciences and technology to rewrite the basic operating systems of our world. Atoms, molecules, genes and proteins can be designed like never before. The biological world has already demonstrated what’s possible on this scale — if we’re going to aim big as a species, it’s time we think small.

At OS Fund, we don’t invest in particular problems. Instead of trying to solve energy or climate change or the spread of disease, we invest in the foundational technology that could be applied to solve all problems. In the same way that early computer companies like Intel, Apple and Microsoft helped spawn the modern era of computing, we aim to do the same thing with atoms, molecules, organisms and complex systems.

The scientists at Ginkgo Bioworks, one of the first companies in the OS Fund ecosystem, are charting their way by designing bacteria that puff out perfume, crops that fertilize themselves, gut microbes to make medicine, and much more. With three highly automated foundries up and running, the company is poised to upset almost every industry you can think of.

Arzeda, another OS Fund company, is using computers to design new genetically-encoded nanomachines, otherwise known as proteins. Although most of us know proteins only as food, these intricate biological objects actually do almost all the work needed to keep cells alive. Designing new proteins from scratch will let humanity play by biology’s rules, meaning we can design our way to better food, fuels and chemicals in the greenest way possible.

Another OS Fund company rewriting our world is NuMat, where they’re arranging atoms in MOFs (metal organic frameworks) to create the most powerful sponges you’ve never heard of. NuMat works at the intersection of high-performance computing, chemistry, and hardware systems to design and manufacture materials that can filter non-renewable material like xenon out of thin air.

But wait, I can hear you thinking, isn’t AI going to eliminate the need for this kind of innovation?

That may be the grandest challenge of them all. How are we as a species going to thrive in a world where artificial intelligence can do more even than our best minds? The answer again requires innovation at the molecular level.

I started Kernel, a neuroenhancement company, personally investing $100M, to help ensure that humans and AI evolve together. We are working at the bleeding edge of neuroscience, solid-state quantum devices, materials science, and photonics to develop the science and brain interface products to allow people to bring their brains “online,” and use that data to radically improve themselves. Radical human cognitive improvement is a requirement if humanity is going to thrive in the future we are barrelling toward. We are a few tools away from an evolutionary leap; what’s on the other side of it is beyond what we can possibly imagine.

Investing in huge rockets, brain interfaces and tiny molecules isn’t actually that different. Developing a green global economy and exploring beyond our pale blue dot are complementary — not competing — visions of the future. It’s time investments in our future here on Earth get the attention and scale afforded those focused on our future in the cosmos.

This article was originally published in the Leadership Series on IndieBio.

Karina Aberg

Digital Forensics, artist-in-residence and researcher

5 年

Great innovative perspective from this author!

回复
David Oram

Building, Scaling and Investing in Emerging Tech Companies.

5 年

Another compelling piece Bryan - the synergies between technologies, along with our exploration of various frontiers is the only way we are going to surpass our current species and planetary limits. Great to see your portfolio tackling so many pressing challenges all at once!

要查看或添加评论,请登录

社区洞察

其他会员也浏览了