More and More Utilities in C++20
This is a cross-post from www.ModernesCpp.com.
Today, I present a few utilities for calculating the midpoint of two values, check if a std::string starts or ends with a substring, and create callables with std::bind_front. These little utilities may not seem so little when you need them.
Let's start arithmetical.
Midpoint and Linear Interpolation
- std::midpoint(a, b) calculates the midpoint (a + (b - a) / 2) of the integers, floating-points, or pointers. If a and b are pointer, they have to point to the same array object.
- std::lerp(a, b, t) calculates the linear interpolation (a + t( b - a)). When t is outside the range [0, 1] it calculates the linear extrapolation.
The following program applies both functions.
// midpointLerp.cpp #include <cmath> // std::lerp #include <numeric> // std::midpoint #include <iostream> int main() { std::cout << std::endl; std::cout << "std::midpoint(10, 20): " << std::midpoint(10, 20) << std::endl; std::cout << std::endl; for (auto v: {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}) { std::cout << "std::lerp(10, 20, " << v << "): " << std::lerp(10, 20, v) << std::endl; } }
The output of the program should be self-explanatory. If not, try it out on the Compiler Explorer.
C++20 has convenience functions for creating arrays.
Creating Arrays and
With std::to_array, and std::make_shared, C++20 offers new ways to create a std::array or std::shared_ptr from C-arrays.
std::to_array
Thanks to std::to_array, creating a std::array from a C-array is a straightforward job.
// toArray.cpp #include <type_traits> #include <utility> #include <array> int main(){ auto arr1 = std::to_array("C-String Literal"); static_assert(arr1.size() == 17); // (1) auto arr2 = std::to_array({ 0, 2, 1, 3 }); // (2) static_assert(std::is_same<decltype(arr2), std::array<int, 4>>::value); auto arr3 = std::to_array<long>({ 0, 1, 3 }); // (3) static_assert(std::is_same<decltype(arr3), std::array<long, 3>>::value); auto arr4 = std::to_array<std::pair<int, float>>( { { 3, .0f }, { 4, .1f }, { 4, .1e23f } }); static_assert(arr4.size() == 3); // (4) static_assert(std::is_same<decltype(arr4), std::array<std::pair<int, float>, 3>>::value); }
The lines (1), (2), (3), and (3) assert that the created std::array has the expected type and size.
Per design, a std::array is as cheap and as fast as a C-array. If you want to know more about std::array and why you should not use a C-array, read my post "std::array - Dynamic Memory, no Thanks".
Additionally, a std::array knows its size and supports the typical interface of each container of the Standard Template Library, such as std::vector.
So far, all MSVC, Clang, GCC compiler support this convenient way to create a std::array. This observation does not hold for the next feature.
Create a std::shared_ptr of C-arrays
Since C++11, C++ has the factory function std::make_shared to create a std::shared_ptr. Since C++20, std::make_shared also supports the creation of std::shared_ptr of C-arrays.
auto s1 = std::make_shared<double[]>(1024); auto s2 = std::make_shared<double[]>(1024, 1.0);
s1 is a std::shared_ptr of a C-array. All members are default initialized. s2 is a std::shared_ptr of a C-array. Each element is initialized to 1.0.
In contrast, the new two new member functions of std::string are already available with a brand-new MSVC, Clang, or GCC compiler.
Check if a String starts with a Prefix or ends with a Suffix
std::string get a new member functions starts_with and ends_with which check if a std::string start or ends with a specified substring
// stringStartsWithEndsWith.cpp #include <iostream> #include <string_view> #include <string> template <typename PrefixType> void startsWith(const std::string& str, PrefixType prefix) { std::cout << " starts with " << prefix << ": " << str.starts_with(prefix) << '\n'; // (1) } template <typename SuffixType> void endsWith(const std::string& str, SuffixType suffix) { std::cout << " ends with " << suffix << ": " << str.ends_with(suffix) << '\n'; } int main() { std::cout << std::endl; std::cout << std::boolalpha; std::string helloWorld("Hello World"); std::cout << helloWorld << std::endl; startsWith(helloWorld, helloWorld); // (2) startsWith(helloWorld, std::string_view("Hello")); // (3) startsWith(helloWorld, 'H'); // (4) std::cout << "\n\n"; std::cout << helloWorld << std::endl; endsWith(helloWorld, helloWorld); endsWith(helloWorld, std::string_view("World")); endsWith(helloWorld, 'd'); }
Both member functions starts_with end ends_with are predicates. This means they return a boolean. You can invoke the member function starts_with (line 1) with a std::string (line 2), a std::string_view (line 3), and a char (line 4).
The next utility function in C++20 my wonder you.
std::bind_front
std::bind_front (Func&& func, Args&& ... args) creates a callable wrapper for a callable func. std::bind_front can have an arbitrary number of arguments and binds its arguments to the front.
Now, to the part which may wonder you. Since C++11, we have std::bind and lambda expression. To be pedantic std::bind is available since the Technical Report 1 (TR1). Both can be used as a replacement of std::bind_front. Furthermore, std::bind_front seems like the small sister of std::bind, because std::bind only supports the rearranging of arguments.Of course, there is a reason in the future to use std::bind_front: std::bind_front propagates exception specification of the underlying call operator.
The following program exemplifies, that you can replace std::bind_front with std::bind, or lambda expressions.
// bindFront.cpp #include <functional> #include <iostream> int plusFunction(int a, int b) { return a + b; } auto plusLambda = [](int a, int b) { return a + b; }; int main() { std::cout << std::endl; auto twoThousandPlus1 = std::bind_front(plusFunction, 2000); // (1) std::cout << "twoThousandPlus1(20): " << twoThousandPlus1(20) << std::endl; auto twoThousandPlus2 = std::bind_front(plusLambda, 2000); // (2) std::cout << "twoThousandPlus2(20): " << twoThousandPlus2(20) << std::endl; auto twoThousandPlus3 = std::bind_front(std::plus<int>(), 2000); // (3) std::cout << "twoThousandPlus3(20): " << twoThousandPlus3(20) << std::endl; std::cout << "\n\n"; using namespace std::placeholders; auto twoThousandPlus4 = std::bind(plusFunction, 2000, _1); // (4) std::cout << "twoThousandPlus4(20): " << twoThousandPlus4(20) << std::endl; auto twoThousandPlus5 = [](int b) { return plusLambda(2000, b); }; // (5) std::cout << "twoThousandPlus5(20): " << twoThousandPlus5(20) << std::endl; std::cout << std::endl; }
Each call (lines 1 - 5) gets a callable taking two arguments and returns a callable taking only one argument because the first argument is bound to 2000. The callable is a function (1), a lambda expression (2), and a predefined function object (line 3). _1 is a so-called placeholder (line 4) and stands for the missing argument. With lambda expression (line 5), you can directly apply one argument and provide an argument b for the missing parameter. From the readability perspective, std::bind_front is easier to read than std::bind or the lambda expression.
If you want to play with the example, use the Compiler Explorer.
What's next?
In my next post to C++20, I present the extensions of the chrono library: time of day, a calendar, and time zones.
Thanks a lot to my Patreon Supporters: Matt Braun, Roman Postanciuc, Venkata Ramesh Gudpati, Tobias Zindl, Marko, G Prvulovic, Reinhold Dr?ge, Abernitzke, Frank Grimm, Sakib, Broeserl, António Pina, Darshan Mody, Sergey Agafyin, Андрей Бурмистров, Jake, GS, Lawton Shoemake, Animus24, Jozo Leko, John Breland, espkk, Wolfgang G?rtner, Louis St-Amour, Stephan Roslen, Venkat Nandam, Jose Francisco, Douglas Tinkham, Kuchlong Kuchlong, Avi Kohn, Robert Blanch, Truels Wissneth, Kris Kafka, Mario Luoni, Neil Wang, Friedrich Huber, Kai, and Sudhakar Balagurusamy.
Thanks in particular to Jon Hess, Lakshman, Christian Wittenhorst, Sherhy Pyton, and Dendi Suhubdy
Seminars
I'm happy to give online-seminars or face-to-face seminars world-wide. Please call me if you have any questions.
Standard Seminars
Here is a compilation of my standard seminars. These seminars are only meant to give you a first orientation.
- C++ - The Core Language
- C++ - The Standard Library
- C++ - Compact
- C++11 and C++14
- Clean Code with Modern C++
- Concurrency with Modern C++
- Design Patterns and Architecture Patterns with C++
- Embedded Programming with Modern C++
- Generic Programming (Templates) with C++
Contact Me
- Tel.: +49 7472 917441
- Mobil: +49 152 31965939
- Mail: [email protected]
- German Seminar Page: www.ModernesCpp.de
- English Seminar Page: www.ModernesCpp.net
Author/trainer/mentor in computational finance: maths (pure, applied, numerical), ODE/PDE/FDM, C++11/C++20, Python, C#, modern software design
4 年Those arithmetic functions are kind of basic.