Moravec's paradox and CV
I want to discuss face recognition and how it fits in with Moravec's paradox.
Background
Steven Pinker writes "The main lesson of thirty-five years of AI research is that the hard problems are easy and the easy problems are hard."
As Moravec writes:
Encoded in the large, highly evolved sensory and motor portions of the human brain is a billion years of experience about the nature of the world and how to survive in it. The deliberate process we call reasoning is, I believe, the thinnest veneer of human thought, effective only because it is supported by this much older and much more powerful, though usually unconscious, sensorimotor knowledge. We are all prodigious olympians in perceptual and motor areas, so good that we make the difficult look easy. Abstract thought, though, is a new trick, perhaps less than 100 thousand years old. We have not yet mastered it. It is not all that intrinsically difficult; it just seems so when we do it.
A compact way to express this argument would be:
领英推荐
Some examples of skills that have been evolving for millions of years: recognizing a face, moving around in space, judging people's motivations, catching a ball, recognizing a voice, setting appropriate goals, paying attention to things that are interesting; anything to do with perception, attention, visualization, motor skills, social skills and so on.
Some examples of skills that have appeared more recently: mathematics, engineering, games, logic and scientific reasoning. These are hard for us because they are not what our bodies and brains were primarily evolved to do. These are skills and techniques that were acquired recently, in historical time, and have had at most a few thousand years to be refined, mostly by cultural evolution.
Face recognition
Since the advent of AlexNet, deep neural networks have improved the quality of computer vision tasks. Now we get face recognition algorithms which are as good or even better than human perception. Which begs the thought - Is this paradox still relevant?