Mapping Pydantic models to SQLAlchemy models, other ORM models, and Alembic for migrations

Mapping Pydantic models to SQLAlchemy models, other ORM models, and Alembic for migrations

If you want to map a Pydantic model to another model or data structure, you can do so by creating methods to convert between them. This is useful when you need to map Pydantic models to SQLAlchemy models, other ORM models, or even dictionaries with different structures.

Here is an example of how to map a Pydantic model to an SQLAlchemy model and vice versa:

Pydantic Model

from pydantic import BaseModel, Field, EmailStr

class UserCreate(BaseModel):

    name: str = Field(..., title="Name", description="The name of the user", example="Alice")

    email: EmailStr = Field(..., title="Email", description="The email address of the user", example="[email protected]")        

SQLAlchemy Model

from sqlalchemy import Column, Integer, String

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)        


Mapping Functions

Now, you can create functions to map between these models:

Pydantic to SQLAlchemy

from sqlalchemy.orm import Session

def create_user(db: Session, user_create: UserCreate) -> User:

    db_user = User(name=user_create.name, email=user_create.email)

    db.add(db_user)

    db.commit()

    db.refresh(db_user)

    return db_user        


SQLAlchemy to Pydantic

from typing import List

def get_user(db: Session, user_id: int) -> UserCreate:

    db_user = db.query(User).filter(User.id == user_id).first()

    if db_user:

        return UserCreate(name=db_user.name, email=db_user.email)

    return None        


Example Usage

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

# Create the tables

Base.metadata.create_all(bind=engine)

# Example usage

db = SessionLocal()

# Create a new user

user_create = UserCreate(name="Alice", email="[email protected]")

db_user = create_user(db, user_create)

print(db_user.id, db_user.name, db_user.email)

# Retrieve the user

user = get_user(db, db_user.id)

print(user)        


Mapping with More Complex Models

For more complex models, you may need to handle nested structures and relationships. Here's an example with a nested Pydantic model and its corresponding SQLAlchemy model:


Pydantic Model

from pydantic import BaseModel, Field, EmailStr

class UserCreate(BaseModel):

    name: str = Field(..., title="Name", description="The name of the user", example="Alice")

    email: EmailStr = Field(..., title="Email", description="The email address of the user", example="[email protected]")

class UserResponse(BaseModel):

    id: int = Field(..., title="ID", description="The unique identifier of the user")

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")        

SQLAlchemy Model

from sqlalchemy import Column, Integer, String

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)        

Mapping Functions

Pydantic to SQLAlchemy

from sqlalchemy.orm import Session

def create_user(db: Session, user_create: UserCreate) -> User:

    db_user = User(name=user_create.name, email=user_create.email)

    db.add(db_user)

    db.commit()

    db.refresh(db_user)

    return db_user

SQLAlchemy to Pydantic

python

Copy code

def get_user(db: Session, user_id: int) -> UserResponse:

    db_user = db.query(User).filter(User.id == user_id).first()

    if db_user:

        return UserResponse(id=db_user.id, name=db_user.name, email=db_user.email)

    return None        


Example Usage

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

# Create the tables

Base.metadata.create_all(bind=engine)

# Example usage

db = SessionLocal()

# Create a new user

user_create = UserCreate(name="Alice", email="[email protected]")

db_user = create_user(db, user_create)

print(db_user.id, db_user.name, db_user.email)

# Retrieve the user

user = get_user(db, db_user.id)

print(user)        


Mapping with Nested Structures

For completeness, let's expand with a nested model example:

Pydantic Model with Nested Structure

from pydantic import BaseModel, Field, EmailStr

class Address(BaseModel):

    street: str = Field(..., title="Street", description="The street address")

    city: str = Field(..., title="City", description="The city of the address")

    country: str = Field(..., title="Country", description="The country of the address")

class UserCreate(BaseModel):

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")

class UserResponse(BaseModel):

    id: int = Field(..., title="ID", description="The unique identifier of the user")

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")        

SQLAlchemy Model with Nested Structure

from sqlalchemy import Column, Integer, String, ForeignKey

from sqlalchemy.orm import relationship

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Address(Base):

    tablename = 'addresses'

    id = Column(Integer, primary_key=True, index=True)

    street = Column(String, index=True)

    city = Column(String, index=True)

    country = Column(String, index=True)

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)

    address_id = Column(Integer, ForeignKey('addresses.id'))

    address = relationship("Address")        

Mapping Functions

Pydantic to SQLAlchemy

def create_user(db: Session, user_create: UserCreate) -> User:

    db_address = Address(street=user_create.address.street, city=user_create.address.city, country=user_create.address.country)

    db.add(db_address)

    db.commit()

    db.refresh(db_address)

    db_user = User(name=user_create.name, email=user_create.email, address_id=db_address.id)

    db.add(db_user)

    db.commit()

    db.refresh(db_user)

    return db_user        

SQLAlchemy to Pydantic

def get_user(db: Session, user_id: int) -> UserResponse:

    db_user = db.query(User).filter(User.id == user_id).first()

    if db_user:

        address = Address(street=db_user.address.street, city=db_user.address.city, country=db_user.address.country)

        return UserResponse(id=db_user.id, name=db_user.name, email=db_user.email, address=address)

    return None        

Example Usage

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

# Create the tables

Base.metadata.create_all(bind=engine)

# Example usage

db = SessionLocal()

# Create a new user with address

user_create = UserCreate(name="Alice", email="[email protected]", address=Address(street="123 Main St", city="Anytown", country="USA"))

db_user = create_user(db, user_create)

print(db_user.id, db_user.name, db_user.email)

# Retrieve the user with address

user = get_user(db, db_user.id)

print(user)        

In this example, we have added the id field to both the Pydantic and SQLAlchemy models and demonstrated how to handle nested structures, such as an address. This allows you to create and retrieve complex nested data structures while maintaining the mapping between Pydantic and SQLAlchemy models.

Base.metadata.create_all(bind=engine)

The Base.metadata.create_all(bind=engine) statement is used to create all tables defined by your SQLAlchemy models in the database. This is typically done during the setup or initialization phase of your application.

Here's the complete example code with the Base.metadata.create_all(bind=engine) statement included, demonstrating how to define Pydantic and SQLAlchemy models, map between them, and create the database tables:

Complete Example

Pydantic Models

from pydantic import BaseModel, Field, EmailStr

class Address(BaseModel):

    street: str = Field(..., title="Street", description="The street address")

    city: str = Field(..., title="City", description="The city of the address")

    country: str = Field(..., title="Country", description="The country of the address")

class UserCreate(BaseModel):

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")

class UserResponse(BaseModel):

    id: int = Field(..., title="ID", description="The unique identifier of the user")

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")        

SQLAlchemy Models

from sqlalchemy import Column, Integer, String, ForeignKey, create_engine

from sqlalchemy.orm import relationship, sessionmaker

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Address(Base):

    tablename = 'addresses'

    id = Column(Integer, primary_key=True, index=True)

    street = Column(String, index=True)

    city = Column(String, index=True)

    country = Column(String, index=True)

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)

    address_id = Column(Integer, ForeignKey('addresses.id'))

    address = relationship("Address")

Database Initialization

python

Copy code

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)

# Create the tables

Base.metadata.create_all(bind=engine)        

Mapping Functions

Pydantic to SQLAlchemy

def create_user(db: Session, user_create: UserCreate) -> User:

    db_address = Address(street=user_create.address.street, city=user_create.address.city, country=user_create.address.country)

    db.add(db_address)

    db.commit()

    db.refresh(db_address)

    db_user = User(name=user_create.name, email=user_create.email, address_id=db_address.id)

    db.add(db_user)

    db.commit()

    db.refresh(db_user)

    return db_user        


SQLAlchemy to Pydantic

def get_user(db: Session, user_id: int) -> UserResponse:

    db_user = db.query(User).filter(User.id == user_id).first()

    if db_user:

        address = Address(street=db_user.address.street, city=db_user.address.city, country=db_user.address.country)

        return UserResponse(id=db_user.id, name=db_user.name, email=db_user.email, address=address)

    return None        

Example Usage


db = SessionLocal()

# Create a new user with address

user_create = UserCreate(name="Alice", email="[email protected]", address=Address(street="123 Main St", city="Anytown", country="USA"))

db_user = create_user(db, user_create)

print(db_user.id, db_user.name, db_user.email)

# Retrieve the user with address

user = get_user(db, db_user.id)

print(user)        

This complete example demonstrates how to define models, initialize the database, and create and retrieve users with addresses using Pydantic and SQLAlchemy. The Base.metadata.create_all(bind=engine) statement ensures that the necessary tables are created in the database before performing any operations.

If the database tables have already been created, running Base.metadata.create_all(bind=engine) again won't cause any harm. SQLAlchemy's create_all method checks if the tables exist before trying to create them, so it won't overwrite or recreate existing tables. However, if you need to modify the schema (e.g., adding new columns, changing data types), you should use a database migration tool like Alembic instead.

Here's how you can ensure the tables are created only if they don't exist and manage the schema changes with Alembic.

Using Alembic for Database Migrations

Install Alembic:

pip install alembic        

Initialize Alembic in your project:

alembic init alembic        

This will create an alembic directory and an alembic.ini file.

Configure Alembic:

Edit alembic.ini to set the database URL:

sqlalchemy.url = sqlite:///./test.db        

Update env.py to import your SQLAlchemy models:

from myapp.models import Base  # replace with your actual models import

target_metadata = Base.metadata        

Create an initial migration:

alembic revision --autogenerate -m "Initial migration"        

This will create a new file in alembic/versions containing the schema of your models.

Apply the migration:

alembic upgrade head        

This will apply the migration and create the tables in the database.

Example Usage with Alembic

Here's an example of how you can manage your database schema with Alembic while still using SQLAlchemy and Pydantic for your models:

SQLAlchemy Models

from sqlalchemy import Column, Integer, String, ForeignKey, create_engine

from sqlalchemy.orm import relationship, sessionmaker

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Address(Base):

    tablename = 'addresses'

    id = Column(Integer, primary_key=True, index=True)

    street = Column(String, index=True)

    city = Column(String, index=True)

    country = Column(String, index=True)

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)

    address_id = Column(Integer, ForeignKey('addresses.id'))

    address = relationship("Address")        

Pydantic Models

from pydantic import BaseModel, Field, EmailStr

class Address(BaseModel):

    street: str = Field(..., title="Street", description="The street address")

    city: str = Field(..., title="City", description="The city of the address")

    country: str = Field(..., title="Country", description="The country of the address")

class UserCreate(BaseModel):

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")

class UserResponse(BaseModel):

    id: int = Field(..., title="ID", description="The unique identifier of the user")

    name: str = Field(..., title="Name", description="The name of the user")

    email: EmailStr = Field(..., title="Email", description="The email address of the user")

    address: Address = Field(..., title="Address", description="The address of the user")        

Database Initialization

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)        

Mapping Functions

Pydantic to SQLAlchemy

from sqlalchemy.orm import Session

def create_user(db: Session, user_create: UserCreate) -> User:

    db_address = Address(street=user_create.address.street, city=user_create.address.city, country=user_create.address.country)

    db.add(db_address)

    db.commit()

    db.refresh(db_address)

    db_user = User(name=user_create.name, email=user_create.email, address_id=db_address.id)

    db.add(db_user)

    db.commit()

    db.refresh(db_user)

    return db_user        

SQLAlchemy to Pydantic

def get_user(db: Session, user_id: int) -> UserResponse:

    db_user = db.query(User).filter(User.id == user_id).first()

    if db_user:

        address = Address(street=db_user.address.street, city=db_user.address.city, country=db_user.address.country)

        return UserResponse(id=db_user.id, name=db_user.name, email=db_user.email, address=address)

    return None        

Example Usage

db = SessionLocal()

# Create a new user with address

user_create = UserCreate(name="Alice", email="[email protected]", address=Address(street="123 Main St", city="Anytown", country="USA"))

db_user = create_user(db, user_create)

print(db_user.id, db_user.name, db_user.email)

# Retrieve the user with address

user = get_user(db, db_user.id)

print(user)        

By using Alembic for migrations, you can manage database schema changes more effectively and avoid issues with re-running Base.metadata.create_all(bind=engine) on an already existing database.

Why alembic?

  1. Alembic is a lightweight database migration tool for use with SQLAlchemy. It's designed to handle the evolution of a database schema over time, allowing you to:
  2. Version Control Your Database Schema: Track changes to your database schema and apply them incrementally.
  3. Handle Schema Changes: Make changes to your database schema (e.g., adding new columns, modifying existing columns, or changing data types) without losing data.
  4. Collaboration: Facilitate team collaboration by ensuring everyone is working with the same database schema version.
  5. Revert Changes: Roll back changes if something goes wrong with a migration.

Here are some reasons why Alembic is beneficial in a project:

Reasons to Use Alembic

Versioning and History:

Alembic allows you to keep a history of all changes made to your database schema. You can apply, revert, or even branch schema changes, providing a clear version control for your database.

Consistency:

Using Alembic ensures that your database schema is consistent across different environments (development, staging, production). All changes are applied in the same order, reducing discrepancies.

Automation:

Alembic can automatically generate migration scripts based on changes detected in your SQLAlchemy models, saving time and reducing errors from manual migration script creation.

Rollback Support:

If a migration causes issues, Alembic allows you to roll back to a previous state, which is crucial for maintaining database integrity.

Integration with SQLAlchemy:

Alembic is specifically designed to work with SQLAlchemy, making it a natural choice for projects using SQLAlchemy for ORM.


How to Use Alembic

Here’s a basic guide on how to get started with Alembic:

1. Installation

pip install alembic        

2. Initializing Alembic

alembic init alembic        

This creates an alembic directory and configuration files.

3. Configuring Alembic

Edit alembic.ini to set the database URL:

sqlalchemy.url = sqlite:///./test.db  # Replace with your actual database URL        

Edit alembic/env.py to import your SQLAlchemy models and set target_metadata:

from myapp.models import Base  # Replace with your actual models import

target_metadata = Base.metadata        

4. Creating an Initial Migration

Generate an initial migration script:

alembic revision --autogenerate -m "Initial migration"        

This will create a migration script in alembic/versions.

5. Applying Migrations

Apply the migrations to update the database schema:

alembic upgrade head        

Example with SQLAlchemy Models

from sqlalchemy import create_engine, Column, Integer, String, ForeignKey

from sqlalchemy.ext.declarative import declarative_base

from sqlalchemy.orm import relationship, sessionmaker

Base = declarative_base()

class Address(Base):

    tablename = 'addresses'

    id = Column(Integer, primary_key=True, index=True)

    street = Column(String, index=True)

    city = Column(String, index=True)

    country = Column(String, index=True)

class User(Base):

    tablename = 'users'

    id = Column(Integer, primary_key=True, index=True)

    name = Column(String, index=True)

    email = Column(String, unique=True, index=True)

    address_id = Column(Integer, ForeignKey('addresses.id'))

    address = relationship("Address")

DATABASE_URL = "sqlite:///./test.db"

engine = create_engine(DATABASE_URL)

SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)        

Summary

While Base.metadata.create_all(bind=engine) is useful for initial database creation, Alembic provides a more robust solution for managing ongoing database schema changes. It ensures consistency, supports rollback, and integrates well with SQLAlchemy, making it a valuable tool for projects that involve complex schema evolution.

要查看或添加评论,请登录

Daniel Herman Varzari的更多文章

社区洞察

其他会员也浏览了