Low Code No Code, Part I: Use Cases and Landscape

Low Code No Code, Part I: Use Cases and Landscape

This post is a guest contribution from Shawn Xu (no relations). Shawn is currently a software engineer at TikTok, got his Masters in Human Computer Interaction at Carnegie Mellon, and writes an informative WeChat public account on SaaS called 硅谷成长攻略. It was originally published on Interconnected.blog on May 30, 2021

The "Low Code, No Code" (LCNC) category of software products has been a hot, trendy area of VC investment (at least in Silicon Valley). This concept of LCNC coincided, and in some ways catalyzed, the rise of so-called "citizen developers". However, this umbrella term LCNC, especially the Low Code part, remains confusing and often lumped together with developer tools and API products.

In this Part I of a two-part series, we will explore the hypergrowth of the LCNC economy from the lens of an investor, and provide a landscape in an attempt to organize this vast landscape. (Note: you should not treat this post or any post on Interconnected as investment advice. Please do your own research.)

In Part II, to be published in a few weeks, I will look at the trends that are pushing LCNC forward, share some product evaluation heuristics, and discuss why we haven’t seen significant LCNC innovation in tech ecosystems outside of Silicon Valley, like China.

Definition

Modern software deployment largely follows a 6-stage lifecycle. Each stage can be broken down further into smaller stages. For instance, testing alone may consist of unit tests, integration tests, end-to-end tests, accessibility tests, etc., each requiring all-code test cases and execution mechanisms.

LCNC abstract away one or more steps in the software development lifecycle.

The most meaningful difference between Low Code and No Code is the level and amount of abstraction.

No Code is about empowerment, enabling users to create software they weren't capable of before. Low Code, on the other hand, is about freeing engineers from repeatedly writing low-impact code.

Before diving into No Code and Low Code separately, we should note that it's almost impossible to draw a clear line between the two concepts. As the above diagram suggests, code level is a linear line rather than a set of three distinct buckets. To keep things clear, we categorize a product into either No Code or Low Code, based on its stated product mission and target users.

Landscape

With that broad definition in mind, I’ve composed the first 2021 Low Code No Code landscape, which contains 369 companies. Here’s the corresponding Airtable sheet and here’s the link to the hi-res version of this landscape graphic.

No alt text provided for this image


Now let’s break down No Code and Low Code, respectively, in more detail.

No Code Breakdown

The level of abstraction of No Code products is so high that users can get started without any programming background. It is roughly divided into two categories: site builders and business automation.

Site Builders (WYSIWYG, what you see is what you get)

This category is probably the most widely known No Code application. Products like Wordpress and Ghost (which runs this newsletter) bring about a new age, where designing and building a simple website no longer requires formal programming training.

In the past few years, we have seen new products emerge, setting their sights not only on simple graphical interfaces, but also all aspects of a complex application: front-end / back-end logic, database, operation and maintenance, etc., providing truly end-to-end solutions with no code!

Among the new breed of site builders are some notable use case verticals:

Internal tooling:

  • Today, if a company's finance team wants a customized expense reporting tool, chances are that they can tailor-make one themselves. They might need some help from engineer colleagues to integrate with the company’s authorization services, but the whole ideation-to-launch process now takes a fraction of time and cost thanks to No Code solutions, compared to either buying off the shelf solutions or dedicating an internal engineer team to build it.

Airtable and Retool stand out as two of the best known examples in the industry.

E-commerce builders:

  • It's hard to imagine how challenging it was just a decade ago to "get your store online". Shopify came along and not only provided a No Code tool to build custom storefronts, but also bundled complete e-commerce backend and fulfillment processes, such as shopping cart, checkout, payment, order management, and logistics management.
  • Fifteen years after its founding, Shopify, like Amazon, has become a giant with its own complete ecosystem. Nevertheless, the e-commerce site builder space continues to be competitive and attract entrepreneurs. These newcomers aim to provide differentiated and specialized services for different verticals or different parts of the e-commerce experience: warehouse management, pre-sales and after-sales service (Volusion), art transactions (BigCartel), extensive multilingual support (PrestaShop).

Mobile app builders

  • "Write once, run anywhere" is the holy grail for cross-platform app building. This is still extremely challenging technically, due to the distinct and ever changing programming interfaces of iOS, Android, and the web.
  • Products in this domain mostly adopt a hybrid model (that is, wrapping a web application with a native shell using tools like React Native). Popular offerings include Thunkable, perry.io, Buildfire and Appgyver.

Rapid builders

  • While this category has some overlap with the previous ones, it deserves its own bucket because of its unique use case. We're entering an era that encourages personal identities and individual brands, and the rapid builders empower people and companies to express themselves more quickly.
  • While some app builders become "heavier" and more powerful, others prefer a lighter touch. Apps like Kodika, Play, and Pineapple let users "build mobile apps from an app". Products like Glide (screenshot below), Pory, and Softr make it insanely easy to build an app for display or viewing purposes. Point to a Google Sheet, pick some source data, choose some styles, and you have a mini app based on that data.


Business Automation

Companies love to have their processes "interconnected". When site visitors fill out “Request for Demo” forms, their records are synced automatically to Salesforce. When users submit a bug in the help forum, an issue is automatically created in JIRA.

IFTTT (If This Then That) is one of the earliest products to provide No Code automation services. Back in 2012, cloud-based services were like remote islands, with little interfacing and interactions with other similar services. I was obsessed with IFTTT to build up my personal automation workflow: "liking" a good article on Feedly would save it to both Dropbox and Evernote; adding a new contact on my phone would immediately get synced to Google contact, etc.

In SaaS, products that provide similar services are called BPM (Business Process Management). Compared to their consumer-facing counterparts, like IFTTT, these services are more often used to connect various SaaS services. Zapier is perhaps the leader in this market -- a unicorn with reportedly a 9-figure revenue level, with only $2.6 million of venture funding raised.

Similar to the Site Builders bucket, we're also seeing different verticals emerge within the Business Automation sector:


Marketing automation

Marketing automation is a type of business automation, often optimizing the "sales pipeline", which describes the entire sales process from advertising, to collecting business leads, to closing deals. Typically, the higher up in the sales funnel, the noisier it gets. Deploying algorithms to triage the noise is a lot more cost-effective than hiring more people to sift through it all.

Products like Funnel.io and ActiveCampaign can seamlessly connect to ad platforms such as Google and Facebook Ads, with a No Code interface that let’s users define "what to do under what situation". For example, if a site visitor downloaded the whitepaper or stayed for over 20 minutes on the website, automatically mark this person in Salesforce as a high priority business lead.


Chatbots

Most messaging apps today have opened up their APIs to allow business users to form automated responses, aka chatbots. These bots also exist on webpages (the famous Intercom bubble) or as phone operators. However, building a meaningful end-to-end chatbot is an extremely code-heavy project: conforming to APIs of different platforms, fetching customer's personal and order information, parsing and understanding the natural language questions, forming a personalized response, etc.

Chatbot is probably the most heated space in the entire LCNC landscape for two (good) reasons: 1. Businesses are more than willing to pay for ubiquitous chatbots, which can greatly scale up their pre and post sales activities; 2. Progress made on machine learning and natural language processing has made end-user experience more “human” and less artificial.

Drift and Chatbot (chatbot.com) are among the new wave of chatbot products that integrate easy-to-configure AI, to help populate smarter and more human responses.

Algorithm trading builders

"When the United Airline stock price rises, buy some Airbnb stock." This type of algorithm-driven trading monitors certain trends in the market and executes trading strategies instantly.

Low Code platforms such as Alpaca came around a few years ago, making it easy for developers to obtain market data and focus on developing and testing algorithms. However, the entry barrier is still high; you still need to know how to code.

Now, with the drag-and-drop UI of Streak, Tradetron, and Composer (beta), anyone can come up with their own algorithm-based investment strategies to be executed automatically.

Streak's trading algorithm editor

Components of a data pipeline

Data visualization platforms such as Tableau and Looker have come a long way to help users drive business insights without writing lengthy Excel scripts.

Yet, they only make part of an end-to-end data process easy. Prior to visualization, analytics and machine learning, data has to undergo a chain of steps including extraction, ingestion, cleaning, transformation, storage, and so on. To build these steps, a company had to hire and rely on seasoned engineers.

This "bottleneck" made the lives of data consumers, from analysts to executives, miserable. Thus, products like Fivetran and Trifacta came to the rescue, offering them self-serve experience for simpler data pipelines, and offloading work from engineers to enable them to focus on more complex pipelines.

Low Code Breakdown

As we defined above, Low Code products free engineers from repeatedly writing code that either creates less value or is too time-consuming.

These two categories make up the main use cases:

  • Project scaffolding

A new engineering project does not typically start with writing business logic right away, but requires a lot of “prep work”: configuring the environment, setting up a test framework, hooking up CI/CD, etc. For larger teams with more established workflow, this typically follows some internal playbooks, but for smaller teams with limited resources, the process could be daunting and error prone.

This is a common "reinventing the wheel" problem. Thus, a group of startups are tackling these repetitive and mundane tasks, by packaging up and turning them into Low Code SaaS solutions: CircleCI's one-click deployment, Wayscript's cloud scripting environment, and Mabl's automatic test platform. There are many other examples.

Take CircleCI as an example. The work of sorting out build dependencies between services, chaining them up, supporting rollback and retries can keep a few well-paid engineers busy for weeks if not longer. With CircleCI, the work is just providing a few declarative configuration files and the platform handles the rest.

We can find similar examples in the Big Data domain. For data scientists and analysts, they find value in conducting analysis and building models, not setting up the underlying infrastructural environment. Databricks found their sweet spot by offering a "one-click" cluster spinup, dynamic scaling against workload, and automatic shutdown after inactivity.?This type of Low Code offering allows these data scientists and analysts to focus on the more value-add part of their work.

  • New tech, small team

The notion of "full-stack engineer" is popular in Silicon Valley, and increasingly in other tech hubs around the world. But, in reality, no engineer is fully “full-stack”; every engineer has his or her own strengths and weaknesses.

In a large company or team, the weaknesses can be patched up with enough resource allocation. In a small startup or team, it’s much harder, so more Low Code solutions are adopted to fill the gaps. A startup that’s focused on developing a distributed system may have little UI expertise, so to provide its customers with a polished dashboarding experience, they will adopt Low Code products, such as Cube.js or Superset.

Certain layers of the tech stack also tend to open up more Low Code opportunities than others, especially if the pace of change is quick while the ramp-up time is quite long. Two that I’ll mention are Infrastructure/DevOps and Data Engineering. For both categories, there is no default architecture or “way to do things”, many different options and opinions exist in the market, and the learning curve is still quite steep.

Low Code vs API Products

It is worth noting that while both Low Code and API products (Stripe, Twilio, etc.) can help offload repetitive, low value engineering workloads, they should not be conflated. From a product perspective, Low Code differs from pure APIs in that it also provides an environment to execute the code -- providing another layer of abstraction. Pure APIs, on the other hand, are integrated as one of many parts of a solution, allowing for higher flexibility than Low Code.

Low Code products also tend to have more pricing schemes and options, e.g. by the number of seats (Wayscript, CircleCI), usage (Databricks), or features (Repl.it). API services usually only charge by usage.

I hope this Part I of our two-part series on Low Code No Code gives you a broad sense why this area is so trendy lately, who the main startups are in this space, and the value they are providing (real or perceived) for the market.

Please read Part II of this series on how to ride the Low Code Node Code wave.

Connie Kwan

I transform founders, PMs and Engineers into STORY-LED Leaders ?? | Chief Product Officer | Product Top 50 | Investor | Board Member | ex-Atlassian | ex-Microsoft

1 年

Thanks for your great summary Kevin Xu

回复
Garland Kan

Independent Kubernetes Cloud Consultant - Contact me

3 年

Kevin Xu im really enjoying these series of blogs that you have been putting out! Great stuff!

要查看或添加评论,请登录

Kevin Xu的更多文章

社区洞察

其他会员也浏览了