LoRA vs QLoRA vs Fine-Tuning = LLM Model Fine Tuning Techniques
Padam Tripathi (Learner)
AI Architect | Generative AI, LLM | NLP | Image Processing | Cloud Architect | Data Engineering (Hands-On) .
LoRA (Low-Rank Adaptation) and QLoRA (Quantized LoRA) are techniques used to fine-tune large language models (LLMs) efficiently by reducing memory and computational requirements.
1. LoRA (Low-Rank Adaptation)
2. QLoRA (Quantized LoRA)
When to Use What?
When to Use Each Approach?
#LLM #LLMs #RAG #DeepSeek #DeepSeekR1 #DeepSeekAI #DataScience #DataProtection #dataengineering #data #Cloud #AWS #azuretime #Azure #AIAgent #MachineLearning #DeepLearning #langchain #AutoGen #PEOPLE #fyp #trending #viral #fashion #food #travel #GenerativeAI #ArtificialIntelligence #AI #AIResearch #AIEthics #AIInnovation #GPT4 #BardAI #Llama2 #AIArt #AIGeneratedContent #AIWriting #AIChatbot #AIAssistant #FutureOfAI #Gemini #Gemini_Art #ChatGPT #openaigpt #OpenAI #Microsoft #Apple #Meta #Netflix #Google #Alphabet #FlowCytometry #BioTechnology #biotech #Healthcare #Pharma #Pharmaceuticals #Accenture #Wipro #Cognizant #IBM #Infosys #Infy #HCL #techmahindra