LINQ Improvements in .NET 9
David Shergilashvili
Enterprise Architect & Software Engineering Leader | Cloud-Native, AI/ML & DevOps Expert | Driving Blockchain & Emerging Tech Innovation | Future CTO
C# is most effective for enterprise-level applications and complex data processing systems where type safety and performance are critical. LINQ optimization techniques shown here are particularly valuable in high-load microservices and real-time data processing scenarios.
Introduction
.NET 9 introduces several significant technical improvements to LINQ in memory management, performance, and asynchronous operations. This document provides a detailed technical overview of these changes, supported by code examples and measurable results.
1. Memory Management Improvements
1.1 Span and Memory Types Integration
.NET 9 integrates Span<T> and Memory<T> types in LINQ operations for more efficient memory usage:
// Efficient memory usage example
Span<int> numbers = stackalloc int[] { 1, 2, 3, 4, 5 };
var processed = numbers.Where(x => x > 2);
// Large array processing
Memory<int> largeArray = new int[1_000_000];
var result = largeArray.Span
.Where(x => x % 2 == 0)
.Select(x => x * 2);
Measurable memory usage results:
1.2 Optimized Buffering
public sealed class OptimizedBuffer<T>
{
private readonly int _capacity;
private T[] _buffer;
public OptimizedBuffer(int capacity)
{
_capacity = capacity;
_buffer = ArrayPool<T>.Shared.Rent(capacity);
}
public void Process(ReadOnlySpan<T> data)
{
if (data.Length <= _capacity)
{
data.CopyTo(_buffer);
// Processing logic
}
}
public void Dispose()
{
ArrayPool<T>.Shared.Return(_buffer);
}
}
2. Iteration Mechanism Updates
2.1 Optimized Iterators
public struct ValueBasedIterator<T>
{
private readonly ReadOnlySpan<T> _data;
private int _position;
public ValueBasedIterator(ReadOnlySpan<T> data)
{
_data = data;
_position = -1;
}
public bool MoveNext()
{
_position++;
return _position < _data.Length;
}
public readonly ref readonly T Current => ref _data[_position];
}
2.2 Measurable Results
[MemoryDiagnoser]
public class IterationBenchmark
{
private readonly int[] _data = Enumerable.Range(0, 100_000).ToArray();
[Benchmark(Baseline = true)]
public int StandardIteration()
{
int sum = 0;
foreach (var item in _data)
{
sum += item;
}
return sum;
}
[Benchmark]
public int OptimizedIteration()
{
int sum = 0;
var span = _data.AsSpan();
ref var searchSpace = ref MemoryMarshal.GetReference(span);
for (int i = 0; i < span.Length; i++)
{
sum += Unsafe.Add(ref searchSpace, i);
}
return sum;
}
}
3. Asynchronous Operations Enhancement
3.1 ValueTask Integration
领英推荐
public sealed class DataProcessor<T>
{
private readonly IQueryable<T> _source;
public async ValueTask<List<T>> ProcessAsync(
Func<T, bool> predicate,
CancellationToken cancellationToken = default)
{
var result = new List<T>();
await foreach (var item in _source.AsAsyncEnumerable()
.WithCancellation(cancellationToken)
.ConfigureAwait(false))
{
if (predicate(item))
{
result.Add(item);
}
}
return result;
}
}
3.2 Asynchronous Stream Optimization
public static class AsyncStreamExtensions
{
public static async ValueTask<Dictionary<TKey, TElement>>
ToAsyncDictionary<TSource, TKey, TElement>(
this IAsyncEnumerable<TSource> source,
Func<TSource, TKey> keySelector,
Func<TSource, TElement> elementSelector,
CancellationToken cancellationToken = default)
where TKey : notnull
{
var dictionary = new Dictionary<TKey, TElement>();
await foreach (var item in source.WithCancellation(cancellationToken))
{
dictionary.Add(keySelector(item), elementSelector(item));
}
return dictionary;
}
}
4. Practical Use Cases
4.1 Data Processing
public sealed class DataStreamProcessor
{
private readonly Channel<byte[]> _channel;
public DataStreamProcessor(int capacity)
{
_channel = Channel.CreateBounded<byte[]>(new BoundedChannelOptions(capacity)
{
SingleReader = true,
SingleWriter = true
});
}
public async ValueTask ProcessDataAsync(
Stream source,
int bufferSize,
CancellationToken cancellationToken = default)
{
var buffer = new byte[bufferSize];
int bytesRead;
while ((bytesRead = await source.ReadAsync(
buffer.AsMemory(),
cancellationToken)) > 0)
{
var chunk = buffer[..bytesRead].ToArray();
await _channel.Writer.WriteAsync(chunk, cancellationToken);
}
}
}
4.2 Optimized Batch Operations
public static class BatchProcessingExtensions
{
public static IEnumerable<IEnumerable<T>> Batch<T>(
this IEnumerable<T> source,
int batchSize)
{
using var enumerator = source.GetEnumerator();
while (enumerator.MoveNext())
{
yield return YieldBatchElements(enumerator, batchSize - 1);
}
}
private static IEnumerable<T> YieldBatchElements<T>(
IEnumerator<T> source,
int count)
{
yield return source.Current;
for (int i = 0; i < count && source.MoveNext(); i++)
{
yield return source.Current;
}
}
}
5. Measurable Results
5.1 Memory Usage
Typical scenarios when processing 1 million elements:
5.2 Execution Time
Typical operation execution times:
6. Best Practices
Conclusion
The LINQ updates in .NET 9 represent significant technical improvements, validated by measurable results. These changes enable developers to create more efficient applications, particularly in large-scale data processing and asynchronous scenarios.