Issue #179 - THE ML ENGINEER ??
Alejandro Saucedo
Tech Executive @ Zalando | Chair/Advisor @ UN, ACM, LF, etc | Join 60k+ ML Newsletter
This #179 edition of the ML Engineer newsletter contains curated ML tutorials, OSS tools and AI events for our 10,000+?subscribers. You can access the Web Newsletter Homepage as well as the Linkedin Newsletter Homepage where you can find all previous editions ??
If you like the content please support the newsletter by sharing with your friends via ?? Twitter ,??? Linkedin and??? Facebook !
?This week in Issue #179: ?
If you would like to suggest articles, ideas, papers, libraries, jobs, events or provide feedback just hit reply or send us an email to [email protected] ! We have received a lot of great suggestions in the past, thank you very much for everyone's support!
The video for our talk on Machine Learning Security at PyCon & PyData Berlin 2022 is now live ?? In this resource we cover a hands on overview of key security considerations at every stage of the machine learning model lifecycle.
A fantastic and vastly comprehensive resources that provides best practices and foundational practical concepts that allow practitioners to tackle, as the book says, almost any machine learning problem.
An interesting resource from the airbnb engineering team sharing their key insights, concepts and general learnings throughout their microservices architecture journey to quality engineering at AirBnb.
Great resource from covering key concepts in image outlier detection, together with practical examples to perform detection of anomalies in image datasets using the alibi detect open source library.
This article provides some interesting insights on the core concepts behind the hacker-news ranking algorithm, with key practical tips that allow practitioners to re-use in their own applications.
领英推荐
Upcoming MLOps Events
The MLOps ecosystem continues to grow at break-neck speeds, making it ever harder for us as practitioners to stay up to date with relevant developments. A fantsatic way to keep on-top of relevant resources is through the great community and events that the MLOps and Production ML ecosystem offers. This is the reason why we have started curating a list of upcoming events in the space, which are outlined below.
Conferences we'll be speaking at:
Other relevant upcoming MLOps conferences:
If you know of any libraries that are not in the "Awesome MLOps" list, please do give us a heads up or feel free to add a pull request !?
Open Source MLOps Tools
Check out the fast-growing ecosystem of production ML tools & frameworks at the github repository which has reached over 10,000 ? github stars. We are currently looking for more libraries to add - if you know of any that are not listed, please let us know or feel free to add a PR. Four featured libraries in the GPU acceleration space are outlined below.
If you know of any open source and open community events that are not listed do give us a heads up so we can add them!
As AI systems become more prevalent in society, we face bigger and tougher societal challenges. We have seen a large number of resources that aim to takle these challenges in the form of AI Guidelines, Principles, Ethics Frameworks, etc, however there are so many resources it is hard to navigate. Because of this we started an Open Source initiative that aims to map the ecosystem to make it simpler to navigate. You can find multiple principles in the repo - some examples include the following:
If you know of any guidelines that are not in the "Awesome AI Guidelines" list, please do give us a heads up or feel free to add a pull request !
About us ? The Institute for Ethical AI & Machine Learning is a UK-based research centre that carries out world-class research into responsible machine learning.