IoT - A Thorough Introduction

IoT - A Thorough Introduction

     IoT (Internet of Things) is an advanced automation and analytics system which exploits networking, sensing, big data, and artificial intelligence technology to deliver complete systems for a product or service. These systems allow greater transparency, control, and performance when applied to any industry or system. IoT systems have applications across industries through their unique flexibility and ability to be suitable in any environment. They enhance data collection, automation, operations, and much more through smart devices and powerful enabling technology.

    This tutorial aims to provide a thorough introduction to IoT. It introduces the key concepts of IoT, necessary in using and deploying IoT systems.

Audience

   This tutorial targets IT professionals, students, and management professionals who want a solid grasp of essential IoT concepts. After completing this tutorial, you will achieve intermediate expertise in IoT and a high level of comfort with IoT concepts and systems.

Prerequisites

   This tutorial assumes general knowledge of networking, sensing, databases, programming, and related technology. It also assumes familiarity with business concepts and marketing.

Overview

    IoT systems allow users to achieve deeper automation, analysis, and integration within a system. They improve the reach of these areas and their accuracy. IoT utilizes existing and emerging technology for sensing, networking, and robotics.    IoT exploits recent advances in software, falling hardware prices, and modern attitudes towards technology. Its new and advanced elements bring major changes in the delivery of products, goods, and services; and the social, economic, and political impact of those changes.

Key Features

The most important features of IoT include artificial intelligence, connectivity, sensors, active engagement, and small device use. A brief review of these features is given below:

·        AI ? IoT essentially makes virtually anything “smart”, meaning it enhances every aspect of life with the power of data collection, artificial intelligence algorithms, and networks. This can mean something as simple as enhancing your refrigerator and cabinets to detect when milk and your favorite cereal run low, and to then place an order with your preferred grocer.

·        Connectivity ? New enabling technologies for networking, and specifically IoT networking, mean networks are no longer exclusively tied to major providers. Networks can exist on a much smaller and cheaper scale while still being practical. IoT creates these small networks between its system devices.

·        Sensors ? IoT loses its distinction without sensors. They act as defining instruments which transform IoT from a standard passive network of devices into an active system capable of real-world integration.

·        Active Engagement ? Much of today's interaction with connected technology happens through passive engagement. IoT introduces a new paradigm for active content, product, or service engagement.

·        Small Devices ? Devices, as predicted, have become smaller, cheaper, and more powerful over time. IoT exploits purpose-built small devices to deliver its precision, scalability, and versatility.

Advantages

The advantages of IoT span across every area of lifestyle and business. Here is a list of some of the advantages that IoT has to offer:

·        Improved Customer Engagement ? Current analytics suffer from blind-spots and significant flaws in accuracy; and as noted, engagement remains passive. IoT completely transforms this to achieve richer and more effective engagement with audiences.

·        Technology Optimization ? The same technologies and data which improve the customer experience also improve device use, and aid in more potent improvements to technology. IoT unlocks a world of critical functional and field data.

·        Reduced Waste ? IoT makes areas of improvement clear. Current analytics give us superficial insight, but IoT provides real-world information leading to more effective management of resources.

·        Enhanced Data Collection ? Modern data collection suffers from its limitations and its design for passive use. IoT breaks it out of those spaces, and places it exactly where humans really want to go to analyze our world. It allows an accurate picture of everything.

Disadvantages

Though IoT delivers an impressive set of benefits, it also presents a significant set of challenges. Here is a list of some its major issues:

·        Security ? IoT creates an eco - system of constantly connected devices communicating over networks. The system offers little control despite any security measures. This leaves users exposed to various kinds of attackers.

·        Privacy ? The sophistication of IoT provides substantial personal data in extreme detail without the user's active participation.

·        Complexity ? Some find IoT systems complicated in terms of design, deployment and maintenance given their use of multiple technologies and a large set of new enabling technologies.

·        Flexibility ? Many are concerned about the flexibility of an IoT system to integrate easily with another. They worry about finding themselves with several conflicting or locked systems.

·        Compliance ? IoT, like any other technology in the realm of business, must comply with regulations. Its complexity makes the issue of compliance seem incredibly challenging when many consider standard software compliance a battle.

Hardware

   The hardware utilized in IoT systems includes devices for a remote dashboard, devices for control, servers, a routing or bridge device, and sensors. These devices manage key tasks and functions such as system activation, action specifications, security, communication, and detection to support-specific goals and actions.

Sensors

   The most important hardware in IoT might be its sensors. These devices consist of energy modules, power management modules, RF modules, and sensing modules. RF modules manage communications through their signal processing, WiFi, ZigBee, Bluetooth, radio transceiver, duplexer, and BAW.

Wearable Electronics

Wearable electronic devices are small devices worn on the head, neck, arms, torso, and feet. Current smart wearable devices include:

·        Head ? Helmets, glasses

·        Neck ? Jewelry, collars

·        Arm ? Watches, wristbands, rings

·        Torso ? Clothing, backpacks

·        Feet ? Socks, shoes


Standard Devices

The desktop, tablet, and cellphone remain integral parts of IoT as the command center and remotes.

·        The desktop provides the user with the highest level of control over the system and its settings.

·        The tablet provides access to the key features of the system in a way resembling the desktop, and also acts as a remote.

·        The cellphone allows some essential settings modification and also provides remote functionality.

Other key connected devices include standard network devices like routers and switches.

Software

    IoT software addresses its key areas of networking and action through platforms, embedded systems, partner systems, and middle ware. These individual and master applications are responsible for data collection, device integration, real-time analytics, and application and process extension within the IoT network. They exploit integration with critical business systems (e.g., ordering systems, robotics, scheduling, and more) in the execution of related tasks.

Data Collection

   This software manages sensing, measurements, light data filtering, light data security, and aggregation of data. It uses certain protocols to aid sensors in connecting with real-time, machine-to-machine networks. Then it collects data from multiple devices and distributes it in accordance with settings. It also works in reverse by distributing data over devices. The system eventually transmits all collected data to a central server.

Device Integration

   Software supporting integration binds (dependent relationships) all system devices to create the body of the IoT system. It ensures the necessary cooperation and stable networking between devices. These applications are the defining software technology of the IoT network because without them, it is not an IoT system. They manage the various applications, protocols, and limitations of each device to allow communication.

Real-Time Analytics

   These applications take data or input from various devices and convert it into viable actions or clear patterns for human analysis. They analyze information based on various settings and designs in order to perform automation-related tasks or provide the data required by industry.

Application and Process Extension

   These applications extend the reach of existing systems and software to allow a wider, more effective system. They integrate predefined devices for specific purposes such as allowing certain mobile devices or engineering instruments access. It supports improved productivity and more accurate data collection.

Technology and Protocols

   IoT primarily exploits standard protocols and networking technologies. However, the major enabling technologies and protocols of IoT are RFID, NFC, low -energy Bluetooth, low - energy wireless, low-energy radio protocols, LTE-A, and WiFi-Direct. These technologies support the specific networking functionality needed in an IoT system in contrast to a standard uniform network of common systems.

NFC and RFID

   RFID (radio-frequency identification) and NFC (near-field communication) provide simple, low energy, and versatile options for identity and access tokens, connection bootstrapping, and payments.

·        RFID technology employs 2-way radio transmitter-receivers to identify and track tags associated with objects.

·        NFC consists of communication protocols for electronic devices, typically a mobile device and a standard device.

Low-Energy Bluetooth

   This technology supports the low - power, long - use need of IoT function while exploiting a standard technology with native support across systems.

Low-Energy Wireless

   This technology replaces the most power hungry aspect of an IoT system. Though sensors and other elements can power down over long periods, communication links (i.e., wireless) must remain in listening mode. Low-energy wireless not only reduces consumption, but also extends the life of the device through less use.

Radio Protocols

   ZigBee, Z-Wave, and Thread are radio protocols for creating low-rate private area networks. These technologies are low-power, but offer high throughput unlike many similar options. This increases the power of small local device networks without the typical costs.

LTE-A

   LTE - A, or LTE Advanced, delivers an important upgrade to LTE technology by increasing not only its coverage, but also reducing its latency and raising its throughput. It gives IoT a tremendous power through expanding its range, with its most significant applications being vehicle, UAV, and similar communication.

WiFi-Direct

   WiFi - Direct eliminates the need for an access point. It allows P2P (peer-to-peer) connections with the speed of WiFi, but with lower latency. WiFi-Direct eliminates an element of a network that often bogs it down, and it does not compromise on speed or throughput.

Common Uses

   IoT has applications across all industries and markets. It spans user groups from those who want to reduce energy use in their home to large organizations who want to streamline their operations. It proves not just useful, but nearly critical in many industries as technology advances and we move towards the advanced automation imagined in the distant future.

Engineering, Industry, and Infrastructure

   Applications of IoT in these areas include improving production, marketing, service delivery, and safety. IoT provides a strong means of monitoring various processes; and real transparency creates greater visibility for improvement opportunities. The deep level of control afforded by IoT allows rapid and more action on those opportunities, which include events like obvious customer needs, non - conforming product, malfunctions in equipment, problems in the distribution network, and more.

Government and Safety

   IoT applied to government and safety allows improved law enforcement, defense, city planning, and economic management. The technology fills in the current gaps, corrects many current flaws, and expands the reach of these efforts. For example, IoT can help city planners have a clearer view of the impact of their design, and governments have a better idea of the local economy.

Home and Office

   In our daily lives, IoT provides a personalized experience from the home to the office to the organizations we frequently do business with. This improves our overall satisfaction, enhances productivity, and improves our health and safety. For example, IoT can help us customize our office space to optimize our work.

Health and Medicine

   IoT pushes us towards our imagined future of medicine which exploits a highly integrated network of sophisticated medical devices. Today, IoT can dramatically enhance medical research, devices, care, and emergency care. The integration of all elements provides more accuracy, more attention to detail, faster reactions to events, and constant improvement while reducing the typical overhead of medical research and organizations.

Media, Marketing, & Advertising

    The applications of IoT in media and advertising involve a customized experience in which the system analyzes and responds to the needs and interests of each customer. This includes their general behavior patterns, buying habits, preferences, culture, and other characteristics.

Marketing and Content Delivery

    IoT functions in a similar and deeper way to current technology, analytics, and big data. Existing technology collects specific data to produce related metrics and patterns over time, however, that data often lacks depth and accuracy. IoT improves this by observing more behaviors and analyzing them differently.

·     This leads to more information and detail, which delivers more reliable metrics and patterns.

·     It allows organizations to better analyze and respond to customer needs or preferences.

·     It improves business productivity and strategy, and improves the consumer experience by only delivering relevant content and solutions.

Improved Advertising

   Current advertising suffers from excess and poor targeting. Even with today's analytics, modern advertising fails. IoT promises different and personalized advertising rather than one-size-fits all strategies. It transforms advertising from noise to a practical part of life because consumers interact with advertising through IoT rather than simply receiving it. This makes advertising more functional and useful to people searching the marketplace for solutions or wondering if those solutions exist.

Environmental Monitoring

   The applications of IoT in environmental monitoring are broad ? environmental protection, extreme weather monitoring, water safety, endangered species protection, commercial farming, and more. In these applications, sensors detect and measure every type of environmental change.

Air and Water Pollution

    Current monitoring technology for air and water safety primarily uses manual labor along with advanced instruments, and lab processing. IoT improves on this technology by reducing the need for human labor, allowing frequent sampling, increasing the range of sampling and monitoring, allowing sophisticated testing on - site, and binding response efforts to detection systems. This allows us to prevent substantial contamina - tion and related disasters.

Extreme Weather

   Though powerful, advanced systems currently in use allow deep monitoring, they suffer from using broad instruments, such as radar and satellites, rather than more granular solutions. Their instruments for smaller details lack the same accurate targeting of stronger technology.

Commercial Farming

   Today's sophisticated commercial farms have exploited advanced technology and bio technology for quite some time, however, IoT introduces more access to deeper auto -mation and analysis. Much of commercial farming, like weather monitoring, suffers from a lack of precision and requires human labor in the area of monitoring. Its automation also remains limited. IoT allows operations to remove much of the human intervention in system function, farming analysis, and monitoring. Systems detect changes to crops, soil, environment, and more. They optimize standard processes through analysis of large, rich data collections. They also prevent health hazards from happening and allow better control.

Manufacturing Applications

   Manufacturing technology currently in use exploits standard technology along with modern distribution and analytics. IoT introduces deeper integration and more powerful analytics. This opens the world of manufacturing in a way never seen before, as organi -zations become fully developed for product delivery rather than a global network of suppliers, makers, and distributors loosely tied together.

Intelligent Product Enhancements

   Much like IoT in content delivery, IoT in manufacturing allows richer insight in real-time. This dramatically reduces the time and resources devoted to this one area, which traditionally requires heavy market research before, during, and well after the products hit the market. IoT also reduces the risks associated with launching new or modified products because it provides more reliable and detailed information. The information comes directly from market use and buyers rather than assorted sources of varied credibility.

Dynamic Response to Market Demands

   Supplying the market requires maintaining a certain balance impacted by a number of factors such as economy state, sales performance, season, supplier status, manufacturing facility status, distribution status, and more. The expenses associated with supply present unique challenges given today's global partners. The associated potential or real losses can dramatically impact business and future decisions. IoT manages these areas through ensuring fine details are managed more at the system level rather than through human evaluations and decisions. An IoT system can better assess and control the supply chain (with most products), whether demands are high or low.

Lower Costs, Optimized Resource Use, and Waste Reduction

   IoT offers a replacement for traditional labor and tools in a production facility and in the overall chain which cuts many previously unavoidable costs; for example, maintenance checks or tests traditionally requiring human labor can be performed remotely with instruments and sensors of an IoT system. IoT also enhances operation analytics to optimize resource use and labor, and eliminate various types of waste, e.g., energy and materials. It analyzes the entire process from the source point to its end, not just the process at one point in a particular facility, which allows improvement to have a more substantial impact. It essentially reduces waste throughout the network, and returns those savings throughout.

Improved Facility Safety

   A typical facility suffers from a number of health and safety hazards due to risks posed by processes, equipment, and product handling. IoT aids in better control and visibility. Its monitoring extends throughout the network of devices for not only performance, but for dangerous malfunctions and usage. It aids (or performs) analysis and repair, or correction, of critical flaws.

Product Safety

   Even the most sophisticated system cannot avoid malfunctions, nonconforming product, and other hazards finding their way to market. Sometimes these incidents have nothing to do with the manufacturing process, and result from unknown conflicts. In manufacturing, IoT helps in avoiding recalls and controlling nonconforming or dangerous product distribution. Its high level of visibility, control, and integration can better contain any issues that appear.

Energy Applications

   The optimization qualities of IoT in manufacturing also apply to energy consumption. IoT allows a wide variety of energy control and monitoring functions, with applications in devices, commercial and residential energy use, and the energy source. Optimization results from the detailed analysis previously unavailable to most organizations and individuals.

Residential Energy

   The rise of technology has driven energy costs up. Consumers search for ways to reduce or control consumption. IoT offers a sophisticated way to analyze and optimize use not only at device level, but throughout the entire system of the home. This can mean simple switching off or dimming of lights, or changing device settings and modifying multiple home settings to optimize energy use. IoT can also discover problematic consumption from issues like older appliances, damaged appliances, or faulty system components. Traditionally, finding such problems required the use of often multiple professionals.

Commercial Energy

   Energy waste can easily and quietly impact business in a major way, given the tremendous energy needs of even small organizations. Smaller organizations wrestle with balancing costs of business while delivering a product with typically smaller margins, and working with limited funding and technology. Larger organizations must monitor a massive, complex ecosystem of energy use that offers few simple, effective solutions for energy use management.

    IoT simplifies the process of energy monitoring and management while maintaining a low cost and high level of precision. It addresses all points of an organization's consumption across devices. Its depth of analysis and control provides organizations with a strong means of managing their consumption for cost shaving and output optimization. IoT systems discover energy issues in the same way as functional issues in a complex business network, and provide solutions.

Reliability

   The analytics and action delivered by IoT also help to ensure system reliability. Beyond consumption, IoT prevents system overloads or throttling. It also detects threats to system performance and stability, which protects against losses such as downtime, damaged equipment, and injuries.

Healthcare Applications

   IoT systems applied to healthcare enhance existing technology, and the general practice of medicine. They expand the reach of professionals within a facility and far beyond it. They increase both the accuracy and size of medical data through diverse data collection from large sets of real-world cases. They also improve the precision of medical care delivery through more sophisticated integration of the healthcare system.

Research

    Much of current medical research relies on resources lacking critical real-world information. It uses controlled environments, volunteers, and essentially leftovers for medical examination. IoT opens the door to a wealth of valuable information through real-time field data, analysis, and testing. IoT can deliver relevant data superior to standard analytics through integrated instruments capable of performing viable research. It also integrates into actual practice to provide more key information. This aids in healthcare by providing more reliable and practical data, and better leads; which yields better solutions and discovery of previously unknown issues. It also allows researchers to avoid risks by gathering data without manufactured scenarios and human testing.

Devices

   Current devices are rapidly improving in precision, power, and availability; however, they still offer less of these qualities than an IoT system integrating the right system effectively. IoT unlocks the potential of existing technology, and leads us toward new and better medical device solutions. IoT closes gaps between equipment and the way we deliver healthcare by creating a logical system rather than a collection of tools. It then reveals patterns and missing elements in healthcare such as obvious necessary improvements or huge flaws.

Care

   Perhaps the greatest improvement IoT brings to healthcare is in the actual practice of medicine because it empowers healthcare professionals to better use their training and knowledge to solve problems. They utilize far better data and equipment, which gives them a window into blind spots and supports more swift, precise actions. Their decision-making is no longer limited by the disconnects of current systems, and bad data. IoT also improves their professional development because they actually exercise their talent rather than spending too much time on administrative or manual tasks. Their organizational decisions also improve because technology provides a better vantage point.

Medical Information Distribution

   One of the challenges of medical care is the distribution of accurate and current information to patients. Healthcare also struggles with guidance given the complexity of following guidance. IoT devices not only improve facilities and professional practice, but also health in the daily lives of individuals. IoT devices give direct, 24/7 access to the patient in a less intrusive way than other options. They take healthcare out of facilities and into the home, office, or social space. They empower individuals in attending to their own health, and allow providers to deliver better and more granular care to patients. This results in fewer accidents from miscommunication, improved patient satisfaction, and better preventive care.

Emergency Care

   The advanced automation and analytics of IoT allows more powerful emergency support services, which typically suffer from their limited resources and disconnect with the base facility. It provides a way to analyze an emergency in a more complete way from miles away. It also gives more providers access to the patient prior to their arrival. IoT gives providers critical information for delivering essential care on arrival. It also raises the level of care available to a patient received by emergency professionals. This reduces the associated losses, and improves emergency healthcare.

Building/Housing Applications

   IoT applied to buildings and various structures allows us to automate routine residential and commercial tasks and needs in a way that dramatically improves living and working environments. This, as seen with manufacturing and energy applications, reduces costs, enhances safety, improves individual productivity, and enhances quality of life.

Environment and Conditioning

   One of the greatest challenges in the engineering of buildings remains management of environment and conditions due to many factors at work. These factors include building materials, climate, building use, and more. Managing energy costs receives the most attention, but conditioning also impacts the durability and state of the structure. IoT aids in improving structure design and managing existing structures through more accurate and complete data on buildings. It provides important engineering information such as how well a material performs as insulation in a particular design and environment.

Health and Safety

   Buildings, even when constructed with care, can suffer from certain health and safety issues. These issues include poor performing materials, flaws that leave the building vulnerable to extreme weather, poor foundations, and more. Current solutions lack the sophistication needed to detect minor issues before they become major issues, or emergencies. IoT offers a more reliable and complete solution by observing issues in a fine-grained way to control dangers and aid in preventing them; for example, it can measure changes in a system's state impacting fire safety rather than simply detecting smoke.

Productivity and Quality of Life

   Beyond safety or energy concerns, most people desire certain comforts from housing or commercial spaces like specific lighting and temperature. IoT enhances these comforts by allowing faster and easier customizing. Adjustments also apply to the area of productivity. They personalize spaces to create an optimized environment such as a smart office or kitchen prepared for a specific individual.

Transportation Applications

   At every layer of transportation, IoT provides improved communication, control, and data distribution. These applications include personal vehicles, commercial vehicles, trains, UAVs, and other equipment. It extends throughout the entire system of all transportation elements such as traffic control, parking, fuel consumption, and more.

Rails and Mass Transit

   Current systems deliver sophisticated integration and performance, however, they employ older technology and approaches to MRT. The improvements brought by IoT deliver more complete control and monitoring. This results in better management of overall performance, maintenance issues, maintenance, and improvements. Mass transit options beyond standard MRT suffer from a lack of the integration necessary to transform them from an option to a dedicated service. IoT provides an inexpensive and advanced way to optimize performance and bring qualities of MRT to other transportation options like buses. This improves services and service delivery in the areas of scheduling, optimizing transport times, reliability, managing equipment issues, and responding to customer needs.

Road

   The primary concerns of traffic are managing congestion, reducing accidents, and parking. IoT allows us to better observe and analyze the flow of traffic through devices at all traffic observation points. It aids in parking by making storage flow transparent when current methods offer little if any data. Accidents typically result from a number of factors, however, traffic management impacts their frequency. Construction sites, poor rerouting, and a lack of information about traffic status are all issues that lead to incidents. IoT provides solutions in the form of better information sharing with the public, and between various parties directly affecting road traffic.

Automobile

   Many in the automotive industry envision a future for cars in which IoT technology makes cars “smart,” attractive options equal to MRT. IoT offers few significant improvements to personal vehicles. Most benefits come from better control over related infrastructure and the inherent flaws in automobile transport; however, IoT does improve personal vehicles as personal spaces. IoT brings the same improvements and customization to a vehicle as those in the home.

Commercial Transportation

   Transportation benefits extend to business and manufacturing by optimizing the transport arm of organizations. It reduces and eliminates problems related to poor fleet management through better analytics and control such as monitoring idling, fuel consumption, travel conditions, and travel time between points. This results in product transportation operating more like an aligned service and less like a collection of contracted services.

Education Applications

    IoT in the classroom combines the benefits of IoT in content delivery, business, and healthcare. It customizes and enhances education by allowing optimization of all content and forms of delivery. It enables educators to give focus to individuals and their method. It also reduces costs and labor of education through automation of common tasks outside of the actual education process.

Education Organizations

   Education organizations typically suffer from limited funding, labor issues, and poor attention to actual education. They, unlike other organizations, commonly lack or avoid analytics due to their funding issues and the belief that analytics do not apply to their industry. IoT not only provides valuable insight, but it also democratizes that information through lowcost, low-power small devices, which still offer high performance. This technology aids in managing costs, improving the quality of education, professional development, and facility management improvement through rich examinations of key areas:

·     Student response, performance, and behavior

·     Instructor response, performance, and behavior

·     Facility monitoring and maintenance

·     Data from other facilities

Data informs them about ineffective strategies and actions, whether educational efforts or facility qualities. Removing these roadblocks makes them more effective.

Educators

   Information provided by IoT empowers educators to deliver improved education. They have a window into the success of their strategies, their students' perspective, and other aspects of their performance. IoT relieves them of administrative and management duties, so they can focus on their mission. It automates manual and clerical labor, and facilitates supervising through features like system flags or controls to ensure students remain engaged. IoT provides instructors with easy access to powerful educational tools. Educators can use IoT to perform as a one-on-one instructor providing specific instructional designs for each pupil; for example, using data to determine the most effective supplements for each student, and auto generating content from lesson materials on-demand for any student. The application of technology improves the professional development of educators because they truly see what works, and learn to devise better strategies, rather than simply repeating old or ineffective methods. IoT also enhances the knowledge base used to devise education standards and practices. Education research suffers from accuracy issues and a general lack of data. IoT introduces large high quality, real-world datasets into the foundation of educational design. This comes from IoT's unique ability to collect enormous amounts of varied data anywhere.

Personalized Education

   IoT facilitates the customization of education to give every student access to what they need. Each student can control their experience and participate in instructional design, and much of this happens passively. The student simply utilizes the system, and performance data primarily shapes their design. This combined with organizational and educator optimization delivers highly effective education while reducing costs.

Government Applications

   IoT supports the development of smart nations and smart cities. This includes enhancement of infrastructure previously discussed (e.g., healthcare, energy, transportation, etc.), defense, and also the engineering and maintenance of communities.

City Planning and Management

   Governing bodies and engineers can use IoT to analyze the often complex aspects of city planning and management. IoT simplifies examining various factors such as population growth, zoning, mapping, water supply, transportation patterns, food supply, social services, and land use. It gathers detailed data in these areas and produces more valuable and accurate information than current analytics given its ability to actually “live” with people in a city.

Creating Jobs

   IoT offers thorough economic analysis. It makes previous blind spots visible and supports better economic monitoring and modeling. It analyzes industry and the marketplace to spot opportunities for growth and barriers.

National Defense

   National threats prove diverse and complicated. IoT augments armed forces systems and services, and offers the sophistication necessary to manage the landscape of national defense. It supports better protection of borders through inexpensive, high performance devices for rich control and observation. IoT automates the protection tasks typically spread across several departments and countless individuals. It achieves this while improving accuracy and speed.

Law Enforcement Applications

   IoT enhances law enforcement organizations and practice, and improves the justice system. The technology boosts transparency, distributes critical data, and removes human intervention where it proves unnecessary.

Policing

   Law enforcement can be challenging. IoT acts as an instrument of law enforcement which reduces manual labor and subjective decisions through better data, information sharing, and advanced automation. IoT systems shave costs by reducing human labor in certain areas such as certain traffic violations. IoT aids in creating better solutions to problems by using technology in the place of force; for example, light in-person investigations of suspicious activities can be replaced with remote observation, logged footage of violations, and electronic ticketing. It also reduces corruption by removing human control and opinion for some violations.

Court System

   Current court systems utilize traditional technology and resources. They generally do not exploit modern analytics or automation outside of minor legal tasks. IoT brings superior analytics, better evidence, and optimized processes to court systems which accelerate processes, eliminate excessive procedures, manage corruption, reduce costs, and improve satisfaction. In the criminal court system, this can result in a more effective and fair system. In routine court services, it introduces automation similar to that of common government office services; for example, IoT can automate forming an LLC. IoT combined with new regulations can remove lawyers from many common legal tasks or reduce the need for their involvement. This reduces costs and accelerates many processes which often require months of traversing legal procedures and bureaucracy.

Consumer Applications

   Consumers benefit personally and professionally from the optimization and data analysis of IoT. IoT technology behaves like a team of personal assistants, advisors, and security. It enhances the way we live, work, and play.

Home

IoT takes the place of a full staff :

·     Butler ? IoT waits for you to return home, and ensures your home remains fully prepared. It monitors your supplies, family, and the state of your home. It takes actions to resolve any issues that appear.

·     Chef ? An IoT kitchen prepares meals or simply aids you in preparing them.

·     Nanny ? IoT can somewhat act as a guardian by controlling access, providing supplies, and alerting the proper individuals in an emergency.

·     Gardner ? The same IoT systems of a farm easily work for home landscaping.

·     Repairman ? Smart systems perform key maintenance and repairs, and also request them.

·     Security Guard ? IoT watches over you 24/7. It can observe suspicious individuals miles away, and recognize the potential of minor equipment problems to become disasters well before they do.

Work

   A smart office or other work space combines customization of the work environment with smart tools. IoT learns about you, your job, and the way you work to deliver an optimized environment. This results in practical accommodations like adjusting the room temperature, but also more advanced benefits like modifying your schedule and the tools you use to increase your output and reduce your work time. IoT acts as a manager and consultant capable of seeing what you cannot.

Play

IoT learns as much about you personally as it does professionally. This enables the technology to support leisure :

·     Culture and Night Life ? IoT can analyze your real-world activities and response to guide you in finding more of the things and places you enjoy such as recommending restaurants and events based on your preferences and experiences.

·     Vacations ? Planning and saving for vacations proves difficult for some, and many utilize agencies, which can be replaced by IoT.

·     Products and Services ? IoT offers better analysis of the products you like and need than current analytics based on its deeper access. It integrates with key information like your finances to recommend great solutions.

Security

   Every connected device creates opportunities for attackers. These vulnerabilities are broad, even for a single small device. The risks posed include data transfer, device access, malfunctioning devices, and always-on/always-connected devices. The main challenges in security remain the security limitations associated with producing low cost devices, and the growing number of devices which creates more opportunities for attacks.

Security Spectrum

   The definition of a secured device spans from the most simple measures to sophisticated designs. Security should be thought of as a spectrum of vulnerability which changes over time as threats evolve. Security must be assessed based on user needs and implementation. Users must recognize the impact of security measures because poorly designed security creates more problems than it solves.

Challenges

Beyond costs and the ubiquity of devices, other security issues plague IoT:

·        Unpredictable Behavior ? The sheer volume of deployed devices and their long list of enabling technologies means their behavior in the field can be unpredictable. A specific system may be well designed and within administration control, but there are no guarantees about how it will interact with others.

·        Device Similarity ? IoT devices are fairly uniform. They utilize the same connection technology and components. If one system or device suffers from a vulnerability, many more have the same issue.

·        Problematic Deployment ? One of the main goals of IoT remains to place advanced networks and analytics where they previously could not go. Unfortunately, this creates the problem of physically securing the devices in these strange or easily accessed places.

·        Long Device Life and Expired Support ? One of the benefits of IoT devices is longevity, however, that long life also means they may outlive their device support. Compare this to traditional systems which typically have support and upgrades long after many have stopped using them. Orphaned devices and abandon ware lack the same security hardening of other systems due to the evolution of technology over time.

·        No Upgrade Support ? Many IoT devices, like many mobile and small devices, are not designed to allow upgrades or any modifications. Others offer inconvenient upgrades, which many owners ignore, or fail to notice.

·        Poor or No Transparency ? Many IoT devices fail to provide transparency with regard to their functionality. Users cannot observe or access their processes, and are left to assume how devices behave. They have no control over unwanted functions or data collection; furthermore, when a manufacturer updates the device, it may bring more unwanted functions.

·        No Alerts ? Another goal of IoT remains to provide its incredible functionality without being obtrusive. This introduces the problem of user awareness. Users do not monitor the devices or know when something goes wrong. Security breaches can persist over long periods without detection.

Liability

   The security flaws of IoT and its ability to perform certain tasks open the door to any associated liability. The three main areas of concern are device malfunction, attacks, and data theft. These issues can result in a wide variety of damages.

Device Malfunction

   IoT introduces a deeper level of automation which can have control over critical systems, and systems impacting life and property. When these systems fail or malfunction, they can cause substantial damage; for example, if an IoT furnace control system experiences a glitch, it may fail in an unoccupied home and cause frozen pipes and water damage. This forces organizations to create measures against it.

Cyber Attacks

   IoT devices expose an entire network and anything directly impacted to the risk of attacks. Though those connections deliver powerful integration and productivity, they also create the perfect opportunity for mayhem like a hacked stove or fire safety sprinkler system. The best measures against this address the most vulnerable points, and provide custom protections such as monitoring and access privileges. Some of the most effective measures against attacks prove simple:

·        Built-in Security ? Individuals and organizations should seek hardened devices, meaning those with security integrated in the hardware and firmware.

·        Encryption ? This must be implemented by the manufacturer and through user systems.

·        Risk Analysis ? Organizations and individuals must analyze possible threats in designing their systems or choosing them.

·        Authorization ? Devices, whenever possible, must be subject to privilege policies and access methods.

Data Theft

   Data, IoT's strength and weakness, proves irresistible to many. These individuals have a number of reasons for their interest ? the value of personal data to marketing/ advertising, identity theft, framing individuals for crimes, stalking, and a bizarre sense of satisfaction. Measures used to fight attacks are also effective in managing this threat.


要查看或添加评论,请登录

社区洞察