Internet of energy and future smart grids
The pressure on the electricity grids is intensifying. The future electricity networks will likely to face a number of challenges including the new patterns of consumption, planning under an increasing uncertainty and overall growing complexity due to the large number of small independent devices connected to the network.
Take smartphones for example: the first iPhone came in 2007 and today, nine years later, about 50% of the adult population of our planet uses a smartphone (it is estimated that this number will reach 80% by 2020). Today’s average smartphone has more computing power than the NASA supercomputer that was used to send the space mission to the Moon in 1969.
The smartphones (and other similar devices like tablets or phablets) are becoming an important part of the global interconnected information system. One day, we might start using their computing power in a series of networks working on delegated tasks. However, today's smartphones use up their energy very quickly and need to be charged too often. One of my colleagues works in Sierra Leone and he told me an interesting story: you can buy a relatively cheap smartphone in Sierra Leone and connect yourself to the Internet via the mobile operator to be online, chat and check your e-mails. The only problem is to charge your smartphone – most of the households do not have running electricity, so they charge their devices at work. At any workplace around Freetown any available plug becomes entangled into a garland of cables and wires as everyone is trying to charge up her or his smartphone or a tablet.
And it is not so easy to fully charge your device as it might seem. Few years back, I traveled through Brussels airport. They have a small conference area there open to the public where one can connect to the Internet or charge her or his phone or a laptop. However, the trick is that the energy does not come for free: you have to sit on the exercise bike and pedal to generate the power. As you start pedaling, you slowly begin to realize how cumbersome and expensive the production of electrical energy really might be. It took me about half an hour of pedaling (and I even started to sweat, although I was going at a very moderate pace) to add up 5% to my iPhone battery charge! Most of us fully charge our smartphones at least once a day without even thinking how much energy they require.
One very interesting vision of how the electricity network might look like in 2050 is the Autonomic Power System (APS), a concept coined by the British scientists in the course of 3-year project led by the University of Strathclyde and involving teams from several UK universities including Cambridge and Imperial College London. In their view, APS is envisaged to be “self*” (self-configuring, self-healing, self-optimizing and self-protecting). In general, Autonomic Power System represents a system-wide approach where decentralized and low-level intelligence autonomously makes the decisions necessary to meet the priorities of the system’s stakeholders. The system can for example disconnect the part of the network that is threatened by the storm and then re-connect it to the grid after the storm passes. It can also detect the new components of the network (e.g. power generators) and to constantly communicate with them accounting for their presence and integrating them into the network. All of the above is done without any human interaction or manual system management – the 2050’s power system will decide what is best by itself. APS designers told BBC that the system represents the first step to the full-scale "Internet of Energy" and might save at least £8bn a year in the UK only.
Electricity networks of tomorrow will be comprised of a large number of small components that would interact together as one single organism, either governed by the superior centralized intelligence or running as a dispersed intellect, perhaps similar to the cloud computing. One way or another, they will get close to the principle of the technological singularity that was described by the sci-fi gurus like Isaac Asimov (e.g I, Robot) and later explored to a greater detail by modern-day futurologists such as Vernor Vinge or Ray Kurzweil.
To learn more about the smart grids of the future, the Internet of Energy and what implications they might bring, download my open-access paper "Social and economic implications for the smart grids of the future" published in Economics and Sociology,
Suggested citation: Strielkowski, W. (2017). Social and economic implications for the smart grids of the future. Economics and Sociology, 10(1), 310-318. doi: 10.14254/2071-789X.2017/10-1/22