The Ins and Outs of Retrieval-Augmented Generation (RAG)
Photo by Frank Zhang on Unsplash

The Ins and Outs of Retrieval-Augmented Generation (RAG)

When accessible large language models first came on the scene, the excitement was impossible to miss: beyond their sheer novelty, they came with the promise to completely transform numerous fields and lines of work.

Almost a year after the launch of ChatGPT, we’re far more aware of LLMs’ limitations, and of the challenges we face when we try to integrate them into real-world products. We’ve also, by now, come up with powerful strategies to complement and enhance LLMs’ potential; among these, retrieval-augmented generation (RAG) has emerged as—arguably—the most prominent. It gives practitioners the power to connect pre-trained models to external, up-to-date information sources that can generate more accurate and more useful outputs.

This week, we’ve gathered a potent lineup of articles that explain the intricacies and practical considerations of working with RAG. Whether you’re deep in the ML trenches or approaching the topic from the perspective of a data scientist or product manager, gaining a deeper familiarity with this approach can help you prepare for whatever the future of AI tools brings.?

If you’re still in the earlier stages of your data science journey and need some expert guidance before you can jump into more specialized topics like RAG, we’ve got you covered, too. From our partners, we’re thrilled to share the AI and Data Scientist Roadmap. Check out this step-by-step guide to becoming an AI or Data Scientist in 2023, along with all the resources you’ll need to help you learn.


  • Add Your Own Data to an LLM Using Retrieval-Augmented Generation (RAG). For a beginner-friendly introduction to the topic, Beatriz Stollnitz ’s recent deep dive is a terrific resource to visit and bookmark for future reference. It goes through the theoretical foundations of RAG before transitioning to a hands-on basic implementation, showing how you can create a chatbot to help customers find information about the products a company sells.
  • 10 Ways to Improve the Performance of Retrieval Augmented Generation Systems. If you’ve already started tinkering with RAG in your projects, you’ve likely observed that setting it up is one thing, but making it work consistently and produce the intended results is another: “RAG is easy to prototype, but very hard to productionize.” Matt Ambrogi ’s guide provides pragmatic insights on bridging the gap between the framework’s potential and more tangible benefits.

  • RAG vs Finetuning?—?Which Is the Best Tool to Boost Your LLM Application? There are more than a few alternatives to RAG when it comes to building better AI products. Heiko Hotz offers a nuanced and thorough comparison of RAG and model fine-tuning, another prominent strategy for upgrading the performance of generic LLMs. Ultimately, as Heiko eloquently puts it, “There is no one-size-fits-all solution; success lies in aligning the optimisation method with the specific requirements of the task.”


For other excellent reads on topics ranging from counterfactual insights to dynamic pricing, we hope you explore some of our other recent highlights:

Thank you for supporting our authors’ work! If you enjoy the articles you read on TDS, consider becoming a Medium member ?—?it unlocks our entire archive (and every other post on Medium, too).

要查看或添加评论,请登录

社区洞察

其他会员也浏览了