Innovative Learning Strategies For Modern Pedagogy
Computational Thinking
Computational thinking is a powerful approach to thinking and problem solving. It involves breaking large problems down into smaller ones (decomposition), recognizing how these relate to problems that have been solved in the past (pattern recognition), setting aside unimportant details (abstraction), identifying and developing the steps that will be necessary to reach a solution (algorithms) and refining these steps (debugging).
Such computational thinking skills can be valuable in many aspects of life, ranging from writing a recipe to share a favorite dish with friends, through planning a holiday or expedition, to deploying a scientific team to tackle a difficult challenge like an outbreak of disease.
The aim is to teach children to structure problems so they can be solved. Computational thinking can be taught as part of mathematics, science and art or in other settings. The aim is not just to encourage children to be computer coders, but also to master an art of thinking that will enable them to tackle complex challenges in all aspects of their lives.
6. Learning By Doing Science (with remote labs)
Engaging with authentic scientific tools and practices such as controlling remote laboratory experiments or telescopes can build science inquiry skills, improve conceptual understanding, and increase motivation. Remote access to specialized equipment, first developed for scientists and university students, is now expanding to trainee teachers and school students. A remote lab typically consists of apparatus or equipment, robotic arms to operate it, and cameras that provide views of the experiments as they unfold.
Remote lab systems can reduce barriers to participation by providing user-friendly Web interfaces, curriculum materials, and professional development for teachers.
With appropriate support, access to remote labs can deepen understanding for teachers and students by offering hands-on investigations and opportunities for direct-observation that complement textbook learning. Access to remote labs can also bring such experiences into the school classroom. For example, students can use a high-quality, distant telescope to make observations of the night sky during daytime school science classes.