The importance that at the IVF Laboratory of HVAC, VOC`s and Positive Pressure systems
Cüneyt ?etin
IVF Sales & Marketing Expert | IVF Lab Design, Build & Setup Developer | Digital Marketing Editor Focused on Women’s Health | Magazine Editor for Reproductive Health Club
First step is building Mechanical system in laboratory before IVf lab installation. These systems are valuable for second and third step.
The Mechanical system has included HVAC, GAS and Electric. But Hvac is really important about Embryo developing. Actually HVAC is heart of IVF laboratory.
Even your laboratory has legendary devices if you have a problem with the HVAC (AIR) of your laboratory, your pregnancy rates will definitely decrease. You can find really important informations about HVAC, VOC`s and Positive Pressure systems
Let`s Start
In vitro fertilization (IVF) is a common technique utilized by assisted reproductive technology (ART) facilities to fertilize donor eggs, and implant them back into the mother. In addition to performing IVF, these clinics frequently store eggs, sperm, and embryos. Unfortunately, manipulating these cells outside of the human body means they are exposed to many types of airborne pollutants, including volatile organic compounds (VOCs). Though embryos are considered extremely adaptable cells, exposure to VOCs can induce changes in gene expression and regulation, including imprinting and epigenetic alterations, which may affect the outcome of IVF procedures.
The IVF industry might not manufacture a product, as many industries using cleanrooms, but it seems appropriate to measure success by an endpoint of the birth of a healthy child. Development and normal growth, however, can be limited in adverse air conditions. The entire IVF process is governed by the biology of sperm, egg and embryo, and we must optimise conditions to protect the “product” against exposure to adverse external factors. The problem lies in the lack of agreement of these conditions.
Two cases were published, one in 2013 and another in 2017, showing that the clinical assessments related to IVF, such as the rates of fertilization, embryo cleavage, blastocyst formation, and pregnancy, could be improved by implementing these strategies. Khoudja et al (2013) added stringent air filtration systems to their IVF lab and observed significant increases in all four IVF-related parameters. Double-shield glass was also installed to make the rooms airtight, preventing VOCs found outside the facility from contaminating the rooms. By remodeling their lab, they increased their blastocyst formation rate by 18%, their rate of clinically successful pregnancies by 10%, and their rate of live births by 8%.3
Ensuring that all procedures performed in the IVF lab are up to the highest standards of quality and safety is a top priority. It’s critical to make sure embryos, sperm, and eggs are all maintained in an environment absent of VOCs.
Quality of air in the clinical embryology laboratory is considered critical for high in vitro fertilization (IVF) success rates, yet evidence for best practices is lacking. Predominantly anecdotal reports on relationships between air quality and IVF success rates have resulted in minimal authentic clinical laboratory guidelines or in recommendations that are based on industrial cleanroom particulate standards with little attention to chemical air filtration. As a result, a nascent industry of costly, specialized air handling equipment for IVF laboratories has emerged to provide air quality solutions that have not been clearly assessed or verified.
Clinics are embracing such technology because their embryology laboratories have become epicenters of assisted reproductive technology as the practice of IVF has moved to blastocyst transfers and utilization of trophectoderm biopsy for preimplantation genetic testing (PGT). Thus, a laboratory’s ability to culture, biopsy, and freeze blastocysts is a rate-limiting step that depends on technical proficiency and a supportive and stable culture environment based on a foundation of high-quality ambient air. This review aims to describe how evidence for the importance of air quality, in particular the role of volatile organic compounds (VOC), has resulted in an evolution of clinical practice that has arguably contributed to improved outcomes.
The human embryo is sensitive to light, temperature and other environmental conditions. Pollutants can settle on workspaces, and although embryos bathed in their culture media overlaid with a layer of light paraffin oil, attention has to be paid to the risk of toxins infiltrating the barrier because embryos lack an immune system to stave off harmful environmental contaminants.
Positive pressure is a pressure within a system that is greater than the environment that surrounds that system. Consequently, if there is any leak from the positively pressured system it will egress into the surrounding environment. This is in contrast to a negative pressure room, where air is sucked in
Use is also made of positive pressure to ensure there is no ingress of the environment into a supposed closed system. A typical example of the use of positive pressure is the location of a habitat in an area where there may exist flammable gases such as found on an oil platform or laboratory cleanroom. This kind of positive pressure is also used on operating theaters and in vitro fertilisation (IVF) labs.
Hospitals may have positive pressure rooms for patients with compromised immune systems. Air will flow out of the room instead of in, so that any airborne microorganisms (e.g., bacteria) that may infect the patient are kept away
This process is important in human and chick development. Positive pressure, created by the closure of anterior and posterior neuropores of the neural tube during neurulation, is a requirement of brain development
VOCs in the lab
VOCs, such as aldehydes and alcohols are commonly found in IVF labs, this includes ethanol, isopropanol, formaldehyde, acetaldehyde, acetonitrile, acetone, d-limonene, and α-pinene. As such, there are several steps that need to be considered when devising a strategy to keep VOC levels as low as possible in IVF labs;
- HEPA and CODA filters – The bulk of airborne contaminants that enter the lab can be removed using high-efficiency particulate air (HEPA) filtration. These filters will remove anything as small as 0.3 microns. Carbon-activated air filtration (CODA) systems can be used alongside HEPA filters to remove hydrocarbons from incubators, gas lines, and all working environments.2
2. Room segmentation – Separating the airflow of the IVF lab from the clinical procedure room with double-door gasketed pass-through windows maintains the positive pressure needed for proper air filtration and prevents the passage of VOCs from one room to another. Separating all other rooms (e.g. gas cylinder room, storage rooms, office, and diagnostic rooms) from the IVF lab is also necessary to prevent contamination.
3. Use VOC-free paints –Paints may contain formaldehyde, but if the concentration is less than 0.1% to 1%, depending on the manufacturer, then it may not be listed as an ingredient in the mixture. It’s best to use paints that are guaranteed to be VOC-free, without the addition of pigment at the point-of-sale.
4. Furniture – Wood furniture may contain binders that emit formaldehyde into the air, while varnished, shellacked, or painted furniture can also be a source of VOCs. In an IVF lab, steel furniture washed beforehand with isopropanol and off-gassed (i.e. aired out for several days in a separate room), is the superior solution as it releases a lower concentration of VOCs. If the furniture requires greasing, a silicone-based lubricant should be employed.
5. Off-gas plasticware before use – Most plasticware, like Petri dishes and pipette tips, is made of polystyrene, which can release styrene, a potentially harmful VOC. Allowing plasticware to off-gas is necessary to prevent styrene from contaminating embryo cultures. To do this, open the sleeves of the plasticware and let it vent in a room other than the lab, preferably in a laminar flow hood.
6. Incubator setup and maintenance – Keeping your incubators VOC-free is critical, as a contaminated incubator can affect every single embryo culture. Like plasticware, incubators should be off-gassed and any repairs or servicing should be performed with low-VOC and/or off-gassed products as well. To decrease the overall levels of VOCs running through the incubators on a daily basis, in-line filters between the gas tank and the incubator as well as VOC-free gases should be used. Employing incubators that can flush out ambient air from the incubator and replace it with gases from the tanks also ensures the only source of VOC contamination is limited to the tanks or in-line filters and not the lab environment.
7. Use VOC-free labels – Labels represent another possible source of VOCs that often goes unaccounted for. When purchasing labels for your cryo straws, canes, boxes, and other lab equipment, make sure they’ve been tested for VOCs. Testing is usually performed by the manufacturer, so it makes sense to purchase labels from the source rather than through a secondary distributor.
8. Don’t use cigarettes, cosmetics, perfume, or cologne – All four of these products emit significant amounts of VOCs. Even residual smoke exiting the lungs can potentially release enough VOCs to affect the embryos. As such, it’s recommended that an IVF lab be smoke-, cosmetic-, perfume-, and cologne-free.
9. VOC-free cleaning products –Though ethanol is the disinfectant of choice in most labs, it is considered a potent VOC and embryo toxin. Chemicals that can be used in place of ethanol include diluted sodium hypochlorite solution (bleach), hydrogen peroxide, and the commercially-available Oosafe?.3
10. Monitor VOC levels– Most VOCs can be detected by gas chromatography or gas chromatography mass spectrometry. Photoionization detectors can be used to get a general sense of the level of VOCs in the lab; however, they can’t distinguish between VOCs, making it hard to pinpoint the source of contamination.
The monitoring the air for small particles
When one has the proper measuring devices the monitoring is quick and gives a clear picture of the condition of a room. Following are the cases in which it is recommended to monitor particles in the air:
? In a new room: "particles’ counting" is required for an immediate feedback regarding the quality of the air system.
? During renovation and maintenance monitoring should be repeatedly done to make sure that the job is improving the air quality and not vice versa.
? During adjusting "air changes per hour", repeated "particles’counting" monitoring is to be done to regulate the optimum number of changes required.
Class 5: IVF laboratories, operating theaters - orthopedics (bones), open chest and cranium;
Class 6 : other operating theaters ;
Class 7 : intensive care units, sterile material storage rooms, air locks and sterile corridors and rooms.
As you know, importance of mechanical systems and procedures are developing your pregnancy rates.
Absolutely you must buy best quality mechanical system for your laboratory.
Because these systems are paid by once and has used long times.
its when you saw pregnancy and live birth are priceless for us
for healthy women, families and babies