Identifying and Handling Outliers in Pandas: With Python Examples by Fidel V.

Identifying and Handling Outliers in Pandas: With Python Examples by Fidel V.


Identifying and handling outliers in pandas involves several steps, such as detecting outliers, deciding how to handle them (remove, replace, or keep), and implementing the chosen strategy. Below, I'll provide a step-by-step, along with coding examples using Python and pandas.

  1. Import Libraries: First, import the necessary libraries.

python                                            Mad Scientist Desktop 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt        

  1. Generate Sample Data: Let's create a sample DataFrame with some outliers.

python                                            Mad Scientist Desktop 

# Creating a Fidel DataFrame
data = {'A': [1, 2, 3, 4, 5, 200],
        'B': [10, 20, 30, 40, 50, 60]}
df = pd.DataFrame(data)        


  1. Detect Outliers: One common method for detecting outliers is using the Z-score. Values with a Z-score greater than a threshold (usually 2 or 3) are considered outliers.

python                                            Mad Scientist Desktop 

# Calculate Z-score for each column
z_scores = (df - df.mean()) / df.std()

# Find outliers based on Z-score
threshold = 2
outliers = df[(z_scores > threshold).any(axis=1)]
print("Outliers detected:")
print(outliers)
        


  1. Handle Outliers: Depending on your analysis and data, you can handle outliers in different ways: removing them, replacing them with a central tendency measure (mean, median), or keeping them.

python                                            Mad Scientist Desktop 

# Replace outliers with median
median = df.median()
df = df.mask((z_scores > threshold).any(axis=1), median, axis=1)
print("DataFrame after handling outliers:")
print(df)
        


  1. Visualization (Optional): Visualizing outliers can provide insights into data distribution and the effectiveness of outlier handling.

python                                            Mad Scientist Desktop 

# Boxplot before outlier handling
plt.figure(figsize=(8, 6))
plt.subplot(1, 2, 1)
df.boxplot()
plt.title("Before Outlier Handling")

# Boxplot after outlier handling
plt.subplot(1, 2, 2)
df.boxplot()
plt.title("After Outlier Handling")

plt.show()

        

Here I will create visualization code to visualize outliers before and after handling using boxplots

Done! This code identifies outliers using Z-score and replaces them with the median. You can adjust the threshold and choose a different handling strategy based on your data and analysis requirements.


{Thank you for your attention and commitment to follow me}

Best regards,

Fidel Vetino

Solution Architect & Cybersecurity Analyst



#nasa / #Aerospace / #spacex / #AWS / #oracle / #microsoft / #GCP / #Azure / #ERP / #spark / #snowflake / #SAP / #AI / #GenAI / #LLM / #ML / #machine_learning / #cybersecurity / #itsecurity / #python / #Databricks / #Redshift / #deltalake / #datalake / #apache_spark / #tableau / #SQL / #MongoDB / #NoSQL / #acid / #apache / #visualization / #sourcecode / #opensource / #datascience / #pandas / #AIX / #unix / #linux / #bigdata / #freebsd / #pandas / #cloud

要查看或添加评论,请登录

Fidel .V的更多文章

社区洞察

其他会员也浏览了