How Smart Surfaces Improve the Way We Live, Work and Care (part 2)
In the 2nd part of this article, we explore how much smart surface technology has grown in the last decade.
Smart surface technology has changed dramatically over the last decade. Self-healing paint is now available on multiple production vehicles. Superhydrophobic surfaces are widely used in laboratory settings and are now available to consumers as DIY coatings. Photovoltaic panels have dropped in price by over 90%, and self-dimming windows are in large-scale trials worldwide.
What companies are investing in the growth of smart surface technology??
Smart surfaces will eventually impact almost every industry, from driverless cars to robotics to renewable energy. Some of the world’s leading companies are aggressively pursuing new smart surface technologies and applications.
Not surprisingly, investment in smart surfaces remains strong. Large corporates like?Johnson Controls,?Faurecia,?Henkel, and?DuPont?are making serious investments into internal R&D and startups. They recognize the opportunity in digital transformation and big data.?Cardinal Glass signed a partnership agreement with Click Materials?to scale the production of a unique electrochromic glass product. This partnership will create a sizeable competition for View inc, which has raised over $1B in pursuit of its smart glass technologies. The interest from large corporates is driven by a global desire to digitize traditional business and near-term fears about the commoditization of profitable products. Without investing in internal R&D, investing in (or acquiring) startups, these firms will struggle to maintain their market position.
How is smart surface technology being integrated with other technologies and contributing to growth?
Smart surface technology benefits from advancements in other fields such as chemistry, manufacturing, semiconductors, wireless communication, and batteries. Smart surfaces should be viewed as a component of a broader drive to create smart buildings, smart transportation, and smart cities. As the world’s population grows, and we try to build a more equitable society, fight climate change, and reduce the spread of disease, smart surfaces will likely play a quietly crucial role.
What has changed due to innovations in smart surface technology?
Like many fundamental technical shifts, the changes that smart surfaces have precipitated are hard to detect at first. Still, two examples stand out: the rise of the touch screen and the proliferation of wearable devices. The touchscreen is a smart surface in its purest sense, two-dimensional, and highly responsive to environmental stimuli. As discussed earlier in this piece, it is an example of a part of the physical environment, which is software-controlled. The touch screen is unique among screen technologies in that it is a direct interaction with the content displayed. Likewise, the rise of wearable technology is a powerful signal for the future of smart surfaces. Smart surfaces make it possible to read biometric information directly from the skin, conforming to the patient’s body, providing a combination of data and comfort that was previously impossible. Within a health care setting, smart surfaces help to improve patient outcomes by continually monitoring vital signs with comfortable devices that are accurate and long-lasting. Those innovations around materials and construction have translated to consumer wearables with fitness and lifestyle trackers becoming increasingly more popular.
What smart surface technologies are being developed right now?
The current development focus for smart surface technologies exists in three sectors: healthcare, automotive and smart buildings.
Surfaces with integrated functions that reduce weight and complexity are a straightforward value proposition for the automotive industry. Companies like?TactoTek?and?Canatu?are working on a similar set of technologies they classify as ‘structural electronics.’ Structural electronics describes systems where the electronic or electrical components act as load-bearing and protective structures that would replace otherwise ‘dumb’ structures within an assembly. This integrated approach is potentially powerful as it presents the possibility for low-cost, highly integrated devices with low component weight. TactoTek brands their specific structural electronics technology as?Injection Molded Structural Electronics (IMSE). The name indicates that they believe taking advantage of the injection molding process will unlock scalable production and economies of scale, deliver high-performance electronic performance, and offer wide-design freedom in component shape and materials choice.?
The coronavirus pandemic will likely reinforce the ongoing development of smart surfaces within healthcare. Within healthcare, the drive for innovation focuses on biocidal and antimicrobial coatings. This research was initially intended to help control healthcare-associated infections within hospitals. Still, it will inevitably pivot to a broader context as concerns about COVID-19 spread.?According to the WHO, “Healthcare-associated infections, or infections acquired in healthcare settings, are the most frequent adverse event in healthcare delivery worldwide.”?(Ref)?Unfortunately, the coronavirus pandemic will likely reinforce this trend. Current research focuses on methods such as light-activated materials which kill bacteria and viruses in the presence of light, and other materials which are inherently toxic to pathogens. Copper has been long known to be biocidal. Many of the new materials discussed here are trying to create surfaces with a similar or greater performance at a lower cost and more flexibility. Depending on their performance, these materials are likely to be used anywhere possible within a healthcare setting, from floors, walls, furniture, equipment, garments, and more.?
Smart buildings present an exciting opportunity for the development of new smart surface technology: scale. For anyone working within smart buildings, the drive is to create solutions that can scale across millions of square feet at a cost that customers can afford. Embedded intelligence into surfaces is an excellent place to start, and a connection to the paints and coatings industry means that wide-scale use of smart surfaces in buildings is closer than we think. Current developments include self-dimming windows, self-cleaning surfaces, self-healing materials, and smart floors. The current use cases within buildings tend to focus on cost reductions by lowering maintenance costs. Still, future developments will surely increase building efficiency and use.
How will daily life change with future innovations of smart surface technology?
Smart surfaces will have as profound an impact on our daily lives as the semiconductor has had. The development of microelectronics meant that we could pack more functions into our electronic devices. The development of synthetic materials tends to be mono-functional. That is, they most frequently fulfil only one set of requirements. The steel girder on a bridge supports the weight of passing cars. The paint coating the beam protects it from corrosion, and the sensors attached to the beam measure its stress and strain. Smart surfaces will make it possible to combine these functions into a single material.
By building a world of smart materials, we’re merely copying something around us that already exists: biology. Rarely in nature do we see mono-functional materials or components. Everything is part of an interconnected system, expected to provide for multiple functions. Thanks to smart surfaces, the built environment will be the testbed for a new, highly interlinked world of materials, electronics, and life.
What does a day look like once smart surface trends are integrated fully?
Smart Surfaces will change the way that we interact with and experience the world. As technology blends into the surfaces around us, we will become less aware of its presence. Ubiquitous cameras mounted on the ceilings of offices may give way to smart floors hidden from view. Bulk sensors attached to walls, desks, and furniture will be built into the materials themselves, unlocking calmer and less cluttered environments. Just as the desktop morphed into the laptop and the smartphone, many aspects of building and automotive technology will shrink and eventually disappear into the surfaces around us.
For someone living in that future, many aspects of their lives will be subtly different. They may wake up in a bedroom with smart windows that begin letting morning sunshine in at a prescribed time. They will shower in a bathroom with seamless controls for every function. The clothes that they wear will include biometric functions and long-lasting fabrics that repel dirt and require less water to clean. Instead of working from home, they might commute to the office on public transport, where every surface is helping to control the spread of disease. When getting to their office, the smart floor will monitor occupancy, helping to keep the office efficient, safe, and secure.
Choosing a hot desk would be easy. Every desk is coated with a hydrophobic coating and monitors cleaning events and reports them to the building management system. Pollution-absorbing paint keeps the interior of the office healthy and smelling fresh. Integration with social media could turn the desktop into an interface for conversations with friends and family.
During the day, they’ll receive a notification that an elderly relative is awake and walking around the house as usual. But if they fell in the shower or next to the bed, the smart floor would automatically send an alert to a carer and an ambulance if required.
Walking out of the office, they see the concrete sidewalk and remark that it still looks brand new thanks to self-healing concrete. The street trees are flourishing thanks to porous pavements that absorb rainwater and prevent flooding.
Taking a rideshare home, self-healing materials will make the car interior look and feel new. Electronics integrated into the surfaces make it easy to turn on music, roll the window down, or set the climate control.
As they go to bed, they take a few minutes to read a book, with a soft light emitted by the paint on the wall behind their bed. A single touch and the light gently fades off.
To find out more about our sensor solutions and their applications in other industries, sign up for our?monthly newsletter.