How LED Lighting can Play a major impact to our lives. Why it is essential to hire a Lighting Designer to calculate the right Lighting scenario.
Can light affect our health? In this article, I will share the hidden dangers of light-emitting diode (LED) lighting that most people are completely unaware of. In fact Light has enormous impacts — not only on preventing blindness as we age but it is also a pervasive hidden risk factor for sabotaging our health.
It's a research of almost two years, and when I calculate the lighting scenario in each one of my projects following these rules the result is not only an environment full of EUPHORIA (powerful Greek Word) but it's also a healthy environment.
Largely as a result of energy efficiency, there's been a major transition to using LED as a primary indoor light source. In this regard, it worked like a charm, reducing energy requirements by as much as 95 percent compared to incandescent thermal analog sources of lighting.
However, the heat generated by incandescent light bulbs, which is infrared radiation, is actually beneficial to our health, and worth the extra cost.
There are major downsides to LEDs that are not fully appreciated. LED lighting may actually be one of the most important, non-native EMF ( Electromagnetic Field ) radiation exposures we are exposed to on a daily basis.
If we chose to ignore these new insights, it can have very serious long-term ramifications. It could lead to Age-Related Macular Degeneration (AMD), which is the leading cause of blindness in the United States and elsewhere.
Other health problems rooted in mitochondrial dysfunction may also be exacerbated, and these run the gamut from metabolic disorder to cancer.
Understanding the Dangers of LEDs
Understanding how LEDs can harm our health begins with the recognition that light emitted from an LED bulb is of a different quality than a natural light source. Normally, a natural light source is a black body radiator that gives off all kinds of wavelengths in a more or less continuous manner.
LEDs are fluorescent lamps, consisting of a blue LED, a driver LED, and a fluorescent sheet that covers the blue LED, transforming part of the blue light into longer wavelengths, thereby creating a yellowish light. The yellowish light from the fluorescent layer combines together with the residual blue light to a kind of whitish light, a large portion of which is an aggressive blue light.
You probably know by now that blue light in the evening reduces melatonin production in our pineal gland. But we also have cells in our retina that are responsible for producing melatonin in order to regenerate the retina during the night.
If we use LED lights after sunset, we reduce the regenerative and restoring capacities of our eyes. Needless to say, with less regeneration we end up with degeneration. In this case, the degeneration can lead to AMD, which is the primary cause of blindness among the elderly. However, and this is that most fail to appreciate, LED light exposure that is not balanced with full sunlight loaded with the red parts of the spectrum is always damaging to our biology. Just more so at night.
So, to summarize, the main problem with LEDs is the fact that they emit primarily blue wavelengths and lack the counterbalancing healing and regenerative near-infrared frequencies. They have very little red in them, and no infrared, which is the wavelength required for repair and regeneration.
When we use these aggressive lower frequencies — blue light — it creates ROS that, when generated in excess, causes damage. So when using LEDs, we end up with increased damage and decreased repair and regeneration.
Are There Any Healthy LEDs?
There's a wide range of LED lights on the market these days. Some are cool white, others are warm white, for example. The former emits higher amounts of harmful blue light. The warm LEDs can be deceptive, as they give out a warm-appearing light but do not actually have the red wavelength. The warmth comes from masking the blue with high amounts of yellow and orange.
There are also LEDs available with less blue, which are closer to the spectral distribution of incandescent lamps with regard to the blue part of the spectrum. Unfortunately, without tools to measure it, you won't know exactly what you're getting. This is in sharp contrast to an incandescent light bulb, where you know exactly what kind of light spectrum you're getting.
So there are in fact better and worse LED types around. But the spectral distribution is just one thing … We are interested in the R9, which represents the full reds. This information is sometimes given on the package. You have, for example, CRI, which is the color rendering index of 95 with an R9 of 97 or so. This is the only sign for the customer that you have a high level or a high index for the R9."
How to Identify a Healthier LED
So, when buying LEDs, one way to get a healthier light is to look at the CRI. Sunlight is the gold standard and has a CRI of 100. So do incandescent light bulbs and candles. What you're looking for is a light that has an R9 (full red spectrum) CRI of about 97, which is the closest you'll ever get to a natural light with an LED. Another factor to look at is the color temperature. There are two different kinds of color temperature:
1. Physical color temperature, which means the temperature of your light in degrees Kelvin (K). This applies to sunlight, candlelight, incandescent lamp light and halogens. What this means is that the source itself is as hot to the touch as the color temperature given.
The sun, for example, which has a color temperature of 5,500 K, has a temperature of 5,500 K at its surface, were you to actually touch the sun. Incandescent lamps have a maximum of 3,000 K, as the filament would melt if the temperature got any higher.
2.Correlated color temperature. This is a measurement that tells you how the light source appears to the human eye. In other words, it is a comparative measurement. A correlated color temperature of 2,700 K means it looks the same as a natural light source with a physical color temperature of 2,700 K.
The problem here is that while such a light LOOKS the same as a natural light, it does not actually have the same quality, and your body, on the cellular level, is not fooled by what your eye sees. On a cellular level, and on the level of the retina, the majority of the light is still cold, bluish white, despite its apparent, visible warmth.
Incandescent light bulbs have a color temperature of 2,700 K whereas LEDs can go up to 6,500 K — the really bright white LED. In this case, the closer you are to incandescent, the better. Lastly, there's the digital component, which is virtually unavoidable no matter what. To determine how good or bad a particular LED is:
A simpler way would be to purchase a flicker detector, which are available fairly inexpensively. Another way to determine the flicker rate would be to use the slow motion mode on your camera. Record the light source in slow motion mode and check it for visible flickering.
Unfortunately, it doesn't always work. Some newer cameras and smartphones have a built in algorithm that will detect the flicker frequency and change the shutter speed accordingly to improve the recording, thereby eliminating the interference. If your camera has this algorithm, it will not record a visible flicker even if it's there.
Healthier Solutions
I like being on the cutting edge of technology and I quickly switched out all my incandescent bulbs for LED lighting. I now realize the enormity of my mistake, but at the time — going back almost 10 years now — I was completely unaware that it could have health consequences. Before that, I used full-spectrum fluorescents, which is equally deceptive, as it is full spectrum in name only.
I'm now convinced LED light exposure is a very serious danger, especially if you are in a room without natural light. The biological risks are somewhat mitigated if you have plenty of sunlight streaming through windows. At night, LEDs become a greater danger no matter whether you're in a windowless room or not, as there is no counterbalancing near-infrared light.
Personally, I've not swapped all my lights back to incandescent because they're such energy hogs. But all the lights I have on at night have been switched to clear incandescent bulbs without any coating that changes their beneficial wavelengths. So the take-home message of this article ( if you cannot afford to hire a Lighting Designer to calculate the right Lighting scenario for your environment ) is to grab a supply of the old incandescents if you can and switch back to incandescent light bulbsJust remember to get incandescents that are crystal clear and not coated with white to give off a cool white light. You want a 2,700 K incandescent, thermal analog light source.
If you have to read in the evening or at night time, my personal favorite light source for reading tasks is a low-voltage incandescent halogen lamp, which is operated on a DC transformer. Direct current will eliminate all the dirty electricity and it will eliminate all the flicker.
There are transformers available where you can adjust the output between 6 volts and 12 volts. As long as it's direct current, there is no flicker, there is no dirty electricity, and you are able to dim the halogen lamp into a color temperature that is comparable to candle light even. This is the softest, the healthiest electric light you can get at the moment.
Low-voltage halogen lights are also very energy efficient — up to 100 percent more energy efficient than the standard incandescent lamp. Just be sure to operate it on DC. Incandescent lights, including halogen, can be operated at both AC and DC, but when operating on AC, you end up generating dirty electricity,
Owner at Lookout Mountain Trademark, LLC
7 年This is a wonderful article.
Sr. Project Specialist / Fuse Technical Group
7 年Great article. I have slowly been replacing my LED lamps right back to the halogens.
Business consutant at International forwarding
8 年wonderful shool, and guite informative !!!!!
Consulting & Sales Partner @ SourceWeb Group; Cutting Edge Digital IT Solutions | BCS Poder Solar S de RL de CV; Chairman and President
8 年This is something to spend a lot more time researching. Thanks for sharing this.