Homomorphic Encryption in Rust: Developing Secure Data?Analysis
Luis Soares, M.Sc.
Lead Software Engineer | Blockchain & ZK Protocol Engineer | ?? Rust | C++ | Web3 | Solidity | Golang | Cryptography | Author
Homomorphic encryption allows computations to be performed on encrypted data without decrypting it first. This property is particularly useful for preserving privacy in data analysis.?
In this article, we’ll walk through the development of homomorphic encryption using the Paillier cryptosystem in Rust, demonstrating a practical use case of securely calculating the sum of salaries.
Introduction to Homomorphic Cryptosystems
Homomorphic encryption schemes allow specific types of computations to be carried out on ciphertexts and obtain an encrypted result that, when decrypted, matches the result of operations performed on the plaintexts. There are several types of homomorphic encryption schemes:
The Paillier cryptosystem is an example of an additive homomorphic encryption scheme.
Understanding the Paillier Cryptosystem
The Paillier cryptosystem is an asymmetric encryption scheme known for its additive homomorphic properties. It allows the sum of encrypted values to be computed by simply multiplying the encrypted values, which when decrypted yields the sum of the original plaintexts.
Implementing the Paillier Cryptosystem in?Rust
Key Generation
The first step in using the Paillier cryptosystem is to generate the necessary keys: the public key (used for encryption) and the private key (used for decryption).
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
use num_bigint::{BigUint, RandBigInt, ToBigUint};
use num_integer::Integer;
use num_traits::{One, Zero};
use rand::{thread_rng, Rng};
// Larger prime numbers for p and q
const P: &str = "499";
const Q: &str = "547";
// Function to calculate LCM
fn lcm(a: &BigUint, b: &BigUint) -> BigUint {
(a * b) / a.gcd(b)
}
fn main() {
// Calculate n = p * q
let p = BigUint::from_str_radix(P, 10).unwrap();
let q = BigUint::from_str_radix(Q, 10).unwrap();
let n = &p * &q;
let n_squared = &n * &n;
// Calculate lambda = lcm(p-1, q-1)
let p_minus_1 = &p - BigUint::one();
let q_minus_1 = &q - BigUint::one();
let lambda = lcm(&p_minus_1, &q_minus_1);
// Choose g such that it satisfies the conditions of the Paillier cryptosystem
let g = &n + BigUint::one(); // Simple choice for g
// Calculate mu = (L(g^lambda mod n^2))^(-1) mod n
let g_lambda = g.modpow(&lambda, &n_squared);
let l_g_lambda = (g_lambda.clone() - BigUint::one()) / &n;
let mu = l_g_lambda.mod_inverse(&n).expect("Inverse should exist");
println!("Public key (n, g): ({}, {})", n, g);
println!("Private key (lambda, mu): ({}, {})", lambda, mu);
}
// Function to perform modular exponentiation (base^exp % modulus)
fn mod_exp(base: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
base.modpow(exp, modulus)
}
In the code above, we:
Encryption and Decryption
Next, we implement the encryption and decryption functions using the public and private keys generated.
// Function to generate a random BigUint below a given limit
fn gen_random_biguint_below(limit: &BigUint) -> BigUint {
let mut rng = thread_rng();
rng.gen_biguint_range(&BigUint::one(), limit) // Ensure r is not zero
}
// Function to encrypt a plaintext message using Paillier encryption
fn encrypt(message: &str, n: &BigUint, g: &BigUint) -> BigUint {
let m = BigUint::from_str_radix(message, 10).unwrap(); // Convert message to BigUint
let n_squared = n * n;
let r = gen_random_biguint_below(n); // Random r where gcd(r, n) = 1
// Encryption: c = g^m * r^n % n^2
let gm = mod_exp(g, &m, &n_squared);
let rn = mod_exp(&r, n, &n_squared);
let ciphertext = (gm * rn) % &n_squared;
ciphertext
}
Decryption
// L function: L(x) = (x - 1) / n
fn l_function(x: &BigUint, n: &BigUint) -> BigUint {
(x - BigUint::one()) / n
}
// Function to decrypt a ciphertext back to plaintext using Paillier decryption
fn decrypt(ciphertext: &BigUint, n: &BigUint, lambda: &BigUint, mu: &BigUint) -> BigUint {
let n_squared = n * n;
let c_lambda = ciphertext.modpow(lambda, &n_squared); // c^lambda mod n^2
let l_value = l_function(&c_lambda, n); // L(c^lambda mod n^2)
let m = (l_value * mu) % n; // m = L(c^lambda mod n^2) * mu mod n
m
}
Full Working?Example
Here is the complete Rust code that ties everything together, demonstrating the entire process from key generation to encryption and decryption.
领英推荐
extern crate num_bigint;
extern crate num_integer;
extern crate num_traits;
extern crate rand;
use num_bigint::{BigUint, RandBigInt, ToBigUint};
use num_integer::Integer;
use num_traits::{One, Zero};
use rand::{thread_rng, Rng};
// Larger prime numbers for p and q
const P: &str = "499";
const Q: &str = "547";
// Function to calculate LCM
fn lcm(a: &BigUint, b: &BigUint) -> BigUint {
(a * b) / a.gcd(b)
}
fn main() {
// Calculate n = p * q
let p = BigUint::from_str_radix(P, 10).unwrap();
let q = BigUint::from_str_radix(Q, 10).unwrap();
let n = &p * &q;
let n_squared = &n * &n;
// Calculate lambda = lcm(p-1, q-1)
let p_minus_1 = &p - BigUint::one();
let q_minus_1 = &q - BigUint::one();
let lambda = lcm(&p_minus_1, &q_minus_1);
// Choose g such that it satisfies the conditions of the Paillier cryptosystem
let g = &n + BigUint::one(); // Simple choice for g
// Calculate mu = (L(g^lambda mod n^2))^(-1) mod n
let g_lambda = g.modpow(&lambda, &n_squared);
let l_g_lambda = (g_lambda.clone() - BigUint::one()) / &n;
let mu = l_g_lambda.mod_inverse(&n).expect("Inverse should exist");
println!("Public key (n, g): ({}, {})", n, g);
println!("Private key (lambda, mu): ({}, {})", lambda, mu);
// Encrypt and decrypt a sample message
let plaintext = "12345";
let ciphertext = encrypt(plaintext, &n, &g);
println!("Encrypted message: {}", ciphertext);
let decrypted_message = decrypt(&ciphertext, &n, &lambda, &mu);
println!("Decrypted message: {}", decrypted_message);
}
// Function to perform modular exponentiation (base^exp % modulus)
fn mod_exp(base: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint {
base.modpow(exp, modulus)
}
// Function to generate a random BigUint below a given limit
fn gen_random_biguint_below(limit: &BigUint) -> BigUint {
let mut rng = thread_rng();
rng.gen_biguint_range(&BigUint::one(), limit) // Ensure r is not zero
}
// Function to encrypt a plaintext message using Paillier encryption
fn encrypt(message: &str, n: &BigUint, g: &BigUint) -> BigUint {
let m = BigUint::from_str_radix(message, 10).unwrap(); // Convert message to BigUint
let n_squared = n * n;
let r = gen_random_biguint_below(n); // Random r where gcd(r, n) = 1
// Encryption: c = g^m * r^n % n^2
let gm = mod_exp(g, &m, &n_squared);
let rn = mod_exp(&r, n, &n_squared);
let ciphertext = (gm * rn) % &n_squared;
ciphertext
}
// L function: L(x) = (x - 1) / n
fn l_function(x: &BigUint, n: &BigUint) -> BigUint {
(x - BigUint::one()) / n
}
// Function to decrypt a ciphertext back to plaintext using Paillier decryption
fn decrypt(ciphertext: &BigUint, n: &BigUint, lambda: &BigUint, mu: &BigUint) -> BigUint {
let n_squared = n * n;
let c_lambda = ciphertext.modpow(lambda, &n_squared); // c^lambda mod n^2
let l_value = l_function(&c_lambda, n); // L(c^lambda mod n^2)
let m = (l_value * mu) % n; // m = L(c^lambda mod n^2) * mu mod n
m
}
Applying Paillier to a Real-World Example: Secure Salary?Sum
Now that we have an understanding and implementation of the Paillier cryptosystem, let’s apply it to a real-world example. Imagine a scenario where a company wants to calculate the total sum of employees’ salaries without revealing individual salaries. The company can use Paillier homomorphic encryption to achieve this.
Steps to Implement
fn main() {
// Calculate n = p * q
let p = BigUint::from_str_radix(P, 10).unwrap();
let q = BigUint::from_str_radix(Q, 10).unwrap();
let n = &p * &q;
let n_squared = &n * &n;
// Calculate lambda = lcm(p-1, q-1)
let p_minus_1 = &p - BigUint::one();
let q_minus_1 = &q - BigUint::one();
let lambda = lcm(&p_minus_1, &q_minus_1);
// Choose g such that it satisfies the conditions of the Paillier cryptosystem
let g = &n + BigUint::one(); // Simple choice for g
// Calculate mu = (L(g^lambda mod n^2))^(-1) mod n
let g_lambda = g.modpow(&lambda, &n_squared);
let l_g_lambda = (g_lambda.clone() - BigUint::one()) / &n;
let mu = l_g_lambda.mod_inverse(&n).expect("Inverse should exist");
println!("Public key (n, g): ({}, {})", n, g);
println!("Private key (lambda, mu): ({}, {})", lambda, mu);
// Example salaries (encrypted by each employee)
let salaries = vec!["50000", "60000", "70000"];
// Encrypt the salaries
let encrypted_salaries: Vec<BigUint> = salaries.iter()
.map(|&salary| encrypt(salary, &n, &g))
.collect();
println!("Encrypted salaries: {:?}", encrypted_salaries);
// Compute the encrypted sum of salaries
let encrypted_sum = encrypted_salaries.iter().fold(BigUint::one(), |acc, x| (acc * x) % &n_squared);
println!("Encrypted sum: {}", encrypted_sum);
// Decrypt the sum of salaries
let decrypted_sum = decrypt(&encrypted_sum, &n, &lambda, &mu);
println!("Total sum of salaries (decrypted): {}", decrypted_sum);
}
Security Considerations
When implementing cryptographic systems, several security considerations must be taken into account:
This example demonstrates how to implement homomorphic addition in Rust, preserving the privacy of individual inputs while allowing meaningful data analysis. This approach is invaluable in applications requiring data privacy, such as secure voting systems, confidential financial computations, and privacy-preserving data analytics.
More on Rust and Cryptography
?? Explore More by Luis?Soares
?? Learning Hub: Expand your knowledge in various tech domains, including Rust, Software Development, Cloud Computing, Cyber Security, Blockchain, and Linux, through my extensive resource collection:
?? Connect with Me:
Wanna talk? Leave a comment or drop me a message!
All the best,
Luis Soares [email protected]
Lead Software Engineer | Blockchain & ZKP Protocol Engineer | ?? Rust | Web3 | Solidity | Golang | Cryptography | Author
Software Engineer at GRIFFIN Global Technologies, LLC | Open-Source Maintainer and Contributor
4 个月Great article!