Healthcare in AI World
Rick Khosla, PgMP, PMP, RMP, ACP, AWS, CAHIMS
Innovative Program Management & Delivery Leader | Business Development & Operations Strategist | Published Author | KC Chiefs Enthusiast
The complexity and rise of data in healthcare means that artificial intelligence (AI) will increasingly be applied within the field. Several types of AI are already being employed by payers providers of care, and life sciences companies. The key categories of applications involve diagnosis and treatment recommendations, patient engagement and adherence, and administrative activities. Although there are many instances in which AI can perform healthcare tasks as well or better than humans, implementation factors will prevent large-scale automation of healthcare professional jobs for a considerable period. Ethical issues in the application of AI to healthcare are also discussed.
Artificial intelligence is not one technology, but rather a collection of them. Most of these technologies have immediate relevance to the healthcare field, but the specific processes and tasks they support vary widely. Some particular AI technologies of high importance to healthcare are defined and described below.
We believe that AI has an important role to play in the healthcare offerings of the future. In the form of machine learning, it is the primary capability behind the development of precision medicine, widely agreed to be a sorely needed advance in care. Although early efforts at providing diagnosis and treatment recommendations have proven challenging, we expect that AI will ultimately master that domain as well. Given the rapid advances in AI for imaging analysis, it seems likely that most radiology and pathology images will be examined at some point by a machine. Speech and text recognition are already employed for tasks like patient communication and capture of clinical notes, and their usage will increase.
领英推荐
The greatest challenge to AI in these healthcare domains is not whether the technologies will be capable enough to be useful, but rather ensuring their adoption in daily clinical practice. For widespread adoption to take place, AI systems must be approved by regulators, integrated with EHR systems, standardized to a sufficient degree that similar products work similarly, taught to clinicians, paid for by public or private payer organizations and updated over time in the field. These challenges will ultimately be overcome, but they will take much longer to do so than it will take for the technologies themselves to mature. As a result, we expect to see limited use of AI in clinical practice within 5 years and more extensive use within 10.
It also seems increasingly clear that AI systems will not replace human clinicians on a large scale, but rather will augment their efforts to care for patients. Over time, human clinicians may move toward tasks and job designs that draw on uniquely human skills like empathy, persuasion, and big-picture integration. Perhaps the only healthcare providers who will lose their jobs over time may be those who refuse to work alongside artificial intelligence.
KEYWORDS: Artificial intelligence, clinical decision support, electronic health record systems
I represent a handpicked collection of top private medical facilities offering some of the most successful treatments worldwide. If you think I can help you, send me a message. I’d be happy to help.
7 个月Great article, Rick! With your permission, I'd love to cover some of your key points at https://www.drarti.ai/subscribe in the next edition - I'll cite your article, of course.