Handling Big Data with XGBoost and Azure Databricks: From EDA to Deployment
Hi Connections!
Today, we're diving deep into handling a big data problem using XGBoost and Azure Databricks. I'll guide you through exploratory data analysis (EDA), hyperparameter tuning, model deployment, and saving predictions. Let's begin!
Part 1: Importing the Data
1. Pull Data from Azure Delta Table
Connect to your Delta table and load the data into a PySpark dataframe.
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.format("delta").load("path_to_your_delta_table")
2. Convert PySpark Dataframe to Pandas
With a 40 billion rows dataset (example size), we must downsample or use Dask for parallel computing.
pandas_df = df.sample(False, fraction=0.001).toPandas()? # adjust fraction as per your needs
Part 2: Exploratory Data Analysis (EDA)
pandas_df.describe()
2. Perform EDA on the categorical variables.
pandas_df['your_categorical_column'].value_counts()
Part 3: Data Preprocessing
领英推荐
from sklearn.impute import SimpleImpute
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
# Handle missing values
imputer = SimpleImputer(strategy='most_frequent')
pandas_df = pd.DataFrame(imputer.fit_transform(pandas_df), columns = pandas_df.columns)
# One-hot encode categorical variables
pandas_df = pd.get_dummies(pandas_df)
# Check class imbalance
target_counts = pandas_df['target'].value_counts(normalize=True)
print("Class distribution:\n", target_counts)
# Prepare data for training
X = pandas_df.drop('target', axis=1)
y = pandas_df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Part 4: Model Building
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
model = XGBClassifier()
param_grid = {
? ? 'objective': ['multi:softmax', 'multi:softprob'],
? ? 'learning_rate': [0.01, 0.1, 0.2],
? ? 'max_depth': [5, 10, 15],
? ? 'n_estimators': [50, 100, 200],
? ? 'num_class': 10? # update this with the number of your classes
}
grid_search = GridSearchCV(model, param_grid, cv=10, scoring='accuracy')
2. Fit the GridSearchCV object on your training data.
grid_search.fit(X_train, y_train)
3. Make predictions.
best_model = grid_search.best_estimator_
predictions = best_model.predict(X_test)
Part 5: Saving the Model
from azureml.core import Workspace
ws = Workspace.get(name='your_workspace',
? ? ? ? ? ? ? ? ? ?subscription_id='your_subscription_id',
? ? ? ? ? ? ? ? ? ?resource_group='your_resource_group')
2. Save the best model to the workspace.
from azureml.core.model import Model
Model.register(ws, model_path='path_to_your_model', model_name='your_model_name')
3. Convert predictions to PySpark dataframe and save them back to a new Delta table.
predictions_df = spark.createDataFrame(predictions.tolist(), "prediction: double"
predictions_df.write.format("delta").save("path_to_new_delta_table"))
Remember, this guide might need adjustments based on your specific problem and data. The key is to experiment, learn, and iterate. Happy modeling!
good luck!