Generative AI and the Future of Government Services: Promise and Prudence
Generative AI
Generative AI refers to a type of artificial intelligence that can create new, original content such as text, images, music and more, rather than just analyzing data. The key capability that has captured significant attention recently is the ability to automatically generate natural language.
Chat conversational AI tools like ChatGPT launched in 2022 have brought widespread public awareness to this technology. Other examples include Dall-E for generating images and Claude for text.
In essence, advances in machine learning now enable AI to produce remarkably fluent, human-like language and other creative content on demand versus just following pre-configured rules.
Potential Government Applications
Despite current limitations, large language models (LLMs) and other forms of generative AI hold promise for enhancing public sector productivity in several areas:
Limitations of generative AI and LLMs
LLMs are trained to predict probable next words without deeper understanding of meaning or truthfulness. This allows fluent generation, but responses may not always be accurate or appropriate.
When deploying generative AI systems, organizations should implement responsible practices to address key limitations:
a)?????Hallucination risk: Because these models prioritize plausible outputs over accuracy, they may generate convincing yet incorrect or nonsensical text.
b)????? Lack of reasoning: LLMs predict sequences rather than truly understand content and logic.
c)????? Potential for bias: Since these models learn from patterns in data, they risk perpetuating offensive assumptions or stereotypes if the training process does not proactively address bias.
d)????? Lack of expertise: Without specialized training, LLMs do not possess true contextual competence in sensitive domains like legal or medical advice. Their capacities are broad but shallow - they can articulate ideas fluently but cannot replace years of professional nuance.
e)????? Lack of lived experience: LLMs have no personal context or emotions. Their outputs may appear convincingly human-like, but they do not have true consciousness or understanding.
领英推荐
f)?????? Accessing current information: Earlier LLMs could not retrieve real-time external data, constrained by their training sets. Now some models can incorporate dynamic internet access. However, they still lack broader frames of reference that humans accumulate over time.
g)????? Limited memory: LLMs track limited conversational context in their neural networks. They may lose coherence in long discussions.
h)????? Lack of explainability: The inner workings of generative AI models can be opaque, operating like "black boxes" that produce outputs without revealing their reasoning.
Given such uncertainties in explainability along with other limitations, autonomous generative AI currently seems unsuitable for scenarios directly impacting human health, safety, or civil rights without human oversight.
However, capabilities are evolving rapidly. As providers address limitations and risks, responsible use cases may expand.
The UK Framework for Government
In the UK, an initial guidance on generative AI released in June 2023 encouraged civil servants to gain fluency with the technology while staying cognizant of risks. The Central Digital and Data Office (UK) recently published an expanded framework that provides practical considerations for anyone developing or implementing a generative AI solution, building on that early guidance.
These principles and this framework set out a consistent approach for the use of generative AI tools for UK government.
Principle 1: You know what generative AI is and what its limitations are
Principle 2: You use generative AI lawfully, ethically, and responsibly
Principle 3: You know how to keep generative AI tools secure
Principle 4: You have meaningful human control at the right stage
Principle 5: You understand how to manage the full generative AI lifecycle
Principle 6: You use the right tool for the job
Principle 7: You are open and collaborative
Principle 8: You work with commercial colleagues from the start
Principle 9: You have the skills and expertise that you need to build and use generative AI
Principle 10: You use these principles alongside your organisation’s policies and have the right assurance in place
Generative AI promises notable gains in productivity. The framework seeks to aid readers in understanding generative AI, guide developers building generative AI systems, and most crucially, outline vital considerations for utilizing generative AI safely and ethically.