The future of Device ID in the digital world
JuicyScore
We develop device-centric anti-fraud and risk assessment solutions for online business
The challenges of online traffic filtering and fraud protection arose in parallel with the spread of the Internet and have gone beyond the usual solutions for online business. A significant role in fraud protection at the moment is played by device reputation and the anomalies related to it. In present material we would like to shed light on some of the most effective ways of solving these problems and also to present our vision of Device ID usage trends.
The main purpose of calculating or determining Device ID remains device authentication in order to solve various applied tasks. For example, accurately determined Device ID helps to prevent repeated applications from a device with signs of fraud risk. The Device ID is quite an effective tool, at least for the reason that changing the real Device ID is tantamount to buying a new device, which leads to additional financial and operational barriers for fraudsters or toxic users.
It would seem that accurate determination of a Device ID is a fundamental tool in the fight against the risk of fraud and should be a fairly simple solution, but there are a number of serious technical aspects that need to be considered:
Juicy Team believes that in order to solve the above mentioned problems and face the contemporary challenges online businesses need to develop technologies constantly and also to change the approaches, which existed for the last 15-20 years, since many of them are gradually loosing their efficiency. For the last 6 years (since 2016) we have been working on probabilistic Device ID authentication — it is a 3-rd generation Device ID beyond current privacy regulation rules.
1st Generation Web ID/ Device ID.
ID based on virtual user data.
Device fingerprint of the first generation may not be regarded as a device fingerprint in the modern sense. Fundamentally it is based on the characteristics of the device, but to a greater extent on the traces user leaves on the Internet - to name a few the most common, email or mobile phone number. This also may be a reversible hash and in some cases even a clear text.
The main flaws of such fingerprinting were:
All these reasons created a precondition for other technologies development on the Internet.
2nd Generation Web ID/ Device ID. Device statistical ID
Within this generation of IDs, which began to develop actively in the last 10-15 years, we distinguish IDs related to statical device data (MAC address, EMEI, browser hash (browser hash is often called Device ID), persistent sessions and etc.). Let's take a closer look at some of them:
Browser Hash
This fingerprint detection technology is based on the analysis of statistical components of browsers such as model, browser and operating system versions, system language, screen resolution, time zone, clock data down to millisecond as well as a list of standard fonts installed on the device. Most of the methods are available for all browser modes, as they are necessary for the browsers normal operation. Among the various directions of this method we distinguish classical device fingerprinting, canvas fingerprinting, webgl fingerprinting, audio fingerprinting and a number of others.
The main problem is instability, as browser hash masks change when manipulating a small number of the parameters above as well as in case of browsers changing.
The second important problem is low accuracy, since the browser hash itself does not allow you to authenticate the device with a high degree of probability.
Persistent sessions
One of the first device detection technologies was Evercookie or Persistent cookie technology. Its essence lies in the fact that this type of cookie does not just store information in one data warehouse, such as an http cookie, but uses all available storages of modern browsers - modern HTML 5 standard, Session Storage, Local Storage and others. The ETag header is also used - this is an http header, very short, but you can encode any information in it, and if Java is installed, Java presistence API is used. In addition to this, the PNG Cookies mechanism is used (encoding a piece of information as a small PNG file) and playbacks it through the Canvas API.
Despite all this, persistent-cookies methods practically do not work under an incognito or in private modes of all the contemporary browsers.
领英推荐
Classic Device Fingerprinting
Code libraries checks user's browser for all specific and unique settings and data for this browser and the device as well, the data is reassembled into a string and cached by a certain algorithm. The basis of hash key formation is UserAgent. Browser language, time zone (offset from UTC), fonts, color palette, separate platform-dependent constants and other data specific to the user and platform are added to it, sessions of Internet giants can also be used. Information about plugins installed as well as all multimedia types or main types that support this plugin is used in order to increase uniqueness. Canvas Fingerprinting technologies are also used - certain text is drawn on a hidden canvas element with certain effects applied to it. And then the resulting image is serialized into a byte array and converted to base64.
The main flaws of this approach include the frequent changeability of the UserAgent in modern browsers, specific features of hardware implementation of devices by some manufacturers as well as the features of outdated browsers, lack of integration with Flash and Silverlight and some others.
According to a study by the Electronic Frontier Foundation (a part of the Panopticlick project, https://coveryourtracks.eff.org), the uniqueness of a fingerprint is about 90-94%. Due to the collection and analysis of a large number of parameters and settings of device hardware and software, it’s possible to ensure the necessary level of entropy and uniqueness of each digital fingerprint. Existing fingerprinting-based device detection technologies have caused a significant breakthrough in terms of incoming traffic assessment, web resource audience assessment etc.
The main problems of classical fingerprinting are related to the following aspects:
3rd Generation Web ID/ Device ID. Probablistic Device ID
JuicyScore approach key points
JuicyScore solution is based on the following approaches that allow us to build a more robust probabilistic device ID: JuicyDeviceID with a uniqueness level of 95-99%+, depending on the required probability setting, service response time tolerance / JuicyDeviceID calculation time and various secondary aspects of international online markets (density and quality of the Internet infrastructure, most common devices of a certain model etc.):
Also the advantages of our method include security: all device calculations are performed at the server level, not at the level of the user's device. Thus, we reduce the impact of possible manipulations, preserve privacy and reduce the load on user's device. Moreover, it allows us to constantly detect various randomizers / anti-detect plugins, virtual machines as well as maintain privacy, since in this mode we can require online sites to follow the data processing policy, inform users and ensure the operation of the service only in order to prevent fraud and reduce operational risks.
What is the main point of stable Device ID value?
JuicyDeviceID is an effective way to solve application fraud prevention and detect multi-accounting:
Device ID vs methods of virtualization and randomisation
A strong and stable ID device is a necessary, but not always sufficient tool for an effective risk management in online business. According to our experience and best practices in various markets, the most dangerous cases are associated with the use of professional device randomization methods or the so-called randomizers or anti-detect tools. Any business needs to have a set of technologies to define randomization, virtualization and remote access.
We have developed 300+ randomization detection technologies and are constantly improving our technological stack.
Conclusion
Any online business that works with any assets is in a great need of a stable Device ID. The most common use case for Device ID is to prevent or identify the risk of user fraud. In order to improve business performance many companies prefer to use not one, but a multiple solutions aiming to use their synergy to add more value. Protection across personal data verification, for example, such as data from the credit bureaus, telecom operators, social networks, as well as verification of digital fingerprints of devices and anomaly detection, gives the best result in terms of the synergy of these two concepts, which positively affects the final level of risk in the portfolio and ROI. Thus, companies have to admit that the use of multiple solutions plays a crucial role in growing a successful and sustainable business.