A few examples of MACHINE LEARNING ON RASPBERRY PI in Python with source codes for your real-time projects

A few examples of MACHINE LEARNING ON RASPBERRY PI in Python with source codes for your real-time projects

First, let's define what machine learning is. Machine learning is a subset of artificial intelligence that allows computers to learn from data without being explicitly programmed. This means that instead of writing code to tell the computer what to do, we feed it data and let it learn patterns and relationships within the data to make predictions or classifications on new data.

Raspberry Pi is a small, low-cost computer that can be used for a wide range of applications, including machine learning. It is ideal for running small machine learning models that don't require a lot of computational power.

Python is a popular programming language for machine learning because it has many libraries and frameworks for data processing, modeling, and visualization. Some popular libraries for machine learning in Python include TensorFlow, Scikit-Learn, and Keras.

To use machine learning on a Raspberry Pi, you'll need to do the following:

1. Install the necessary libraries and frameworks for machine learning, such as TensorFlow.

2. Collect and prepare your data. This includes cleaning and preprocessing the data, as well as splitting it into training and testing sets.

3. Train your machine learning model on the training set using an appropriate algorithm. The algorithm you choose will depend on the type of problem you're trying to solve and the type of data you have.

4. Evaluate your model on the testing set to see how well it performs.

5. Deploy your model on the Raspberry Pi to make predictions on new data.

For example, if you wanted to build a machine learning model that could recognize handwritten digits, you could follow these steps:

1. Install TensorFlow on your Raspberry Pi.

2. Collect a dataset of handwritten digits, such as the MNIST dataset.

3. Preprocess the data by normalizing the pixel values and splitting it into training and testing sets.

4. Train a deep neural network on the training set using TensorFlow.

5. Evaluate the model on the testing set to see how well it performs.

6. Deploy the model on the Raspberry Pi and use it to recognize new handwritten digits.

In summary, machine learning on Raspberry Pi using Python involves installing the necessary libraries, preparing your data, training and evaluating your model, and deploying it on the Raspberry Pi to make predictions on new data.

An example of a Python Raspberry Pi machine learning application that uses the TensorFlow library for object detection. This application uses a pre-trained object detection model and the Raspberry Pi camera module to detect objects in real-time video stream.

Before starting, make sure that you have TensorFlow and OpenCV installed on your Raspberry Pi.

import os
import cv2
import numpy as np
import tensorflow as tf
from picamera import PiCamera
from time import sleep

# Define the video stream function
def video_stream():
? ? with PiCamera() as camera:
? ? ? ? camera.resolution = (640, 480)
? ? ? ? camera.framerate = 24
? ? ? ? camera.start_preview()
? ? ? ? sleep(2)
? ? ? ? with np.empty((480, 640, 3), dtype=np.uint8) as frame:
? ? ? ? ? ? while True:
? ? ? ? ? ? ? ? camera.capture(frame, 'bgr', use_video_port=True)
? ? ? ? ? ? ? ? yield frame

# Load the pre-trained model
model_path = os.path.join(os.path.dirname(__file__), 'models', 'ssd_mobilenet_v1_coco_2017_11_17', 'frozen_inference_graph.pb')
model = tf.GraphDef()
with open(model_path, 'rb') as f:
? ? model.ParseFromString(f.read())

# Define the object detection function
def object_detection(frame):
? ? with tf.Session() as sess:
? ? ? ? # Convert the frame to a tensor
? ? ? ? tensor_frame = np.expand_dims(frame, axis=0)
? ? ? ? tensor_frame = tensor_frame.astype(np.float32)

? ? ? ? # Define the input and output tensors
? ? ? ? input_tensor = sess.graph.get_tensor_by_name('import/image_tensor:0')
? ? ? ? output_tensors = [
? ? ? ? ? ? sess.graph.get_tensor_by_name('import/num_detections:0'),
? ? ? ? ? ? sess.graph.get_tensor_by_name('import/detection_scores:0'),
? ? ? ? ? ? sess.graph.get_tensor_by_name('import/detection_boxes:0'),
? ? ? ? ? ? sess.graph.get_tensor_by_name('import/detection_classes:0')
? ? ? ? ]

? ? ? ? # Run the object detection
? ? ? ? num_detections, scores, boxes, classes = sess.run(output_tensors, feed_dict={input_tensor: tensor_frame})

? ? ? ? # Filter the detections based on the score threshold
? ? ? ? threshold = 0.5
? ? ? ? boxes = boxes[scores > threshold]
? ? ? ? classes = classes[scores > threshold]

? ? ? ? # Draw the bounding boxes on the frame
? ? ? ? for box, cls in zip(boxes, classes):
? ? ? ? ? ? ymin, xmin, ymax, xmax = box
? ? ? ? ? ? ymin = int(ymin * frame.shape[0])
? ? ? ? ? ? xmin = int(xmin * frame.shape[1])
? ? ? ? ? ? ymax = int(ymax * frame.shape[0])
? ? ? ? ? ? xmax = int(xmax * frame.shape[1])
? ? ? ? ? ? cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)

? ? ? ? # Return the annotated frame
? ? ? ? return frame

# Start the video stream
for frame in video_stream():
? ? annotated_frame = object_detection(frame)
? ? cv2.imshow('Object Detection', annotated_frame)
? ? if cv2.waitKey(1) & 0xFF == ord('q'):
? ? ? ? break

cv2.destroyAllWindows()        

This code uses the SSD MobileNet V1 object detection model trained on the COCO dataset. The pre-trained model is stored in the `models` directory.

To run this code, save it in a Python file on your Raspberry Pi and run it from the command line using `python filename.py`.

A simple example of a machine learning application using Python and Raspberry Pi, specifically for object detection with the Raspberry Pi camera. The code is written in Python and uses TensorFlow Lite for object detection.?

Prerequisites:

- Raspberry Pi (3 or higher)

- Raspberry Pi Camera

- TensorFlow Lite

import tflite_runtime.interpreter as tflite
import platform
import numpy as np
import cv2
from picamera import PiCamera
from picamera.array import PiRGBArray
import time

# Load the TFLite model
interpreter = tflite.Interpreter(model_path='detect.tflite')
interpreter.allocate_tensors()

# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]

# Initialize camera and grab a reference to the raw capture
camera = PiCamera()
camera.resolution = (640, 480)
camera.framerate = 32
rawCapture = PiRGBArray(camera, size=(640, 480))

# Allow the camera to warmup
time.sleep(0.1)

# Define labels
labels = ['background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
? ? ? ? ? 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
? ? ? ? ? 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
? ? ? ? ? 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
? ? ? ? ? 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
? ? ? ? ? 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
? ? ? ? ? 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass',
? ? ? ? ? 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
? ? ? ? ? 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
? ? ? ? ? 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
? ? ? ? ? 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
? ? ? ? ? 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
? ? ? ? ? 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
? ? ? ? ? 'hair drier', 'toothbrush']

# Capture frames from the camera
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
? ? image = frame.array
? ??
? ? # Preprocessing
? ? resized = cv2.resize(image, (width, height))
? ? input_data = np.expand_dims(resized, axis=0)
? ? input_data = (np.float32(input_data) - 127.5) / 127.5
? ??
? ? # Run inference
? ? interpreter.set_tensor(input_details[0]['index'], input_data)
? ? interpreter.invoke()
? ? boxes = interpreter.get_tensor(output_details[0]['index'])[0]
? ? classes = interpreter.get_tensor(output_details[1]['index'])[0]
? ? scores = interpreter.get_tensor(output_details[2]['index'])[0]
? ? count = int(interpreter.get_tensor(output_details[3]['index'])[0])
? ??
? ? # Draw results on the image
? ? for i in range(count):        


? if scores[i] >= 0.        

?Powered by https://www.harishalakshanwarnakulasuriya.ga

This website is fully owned and purely coded and managed by UI/UX/System/Network/Database/BI/Quality Assurance/Software Engineer L.P.Harisha Lakshan Warnakulasuriya

Company Website -:https://www.harishalakshanwarnakulasuriya.ga

Portfolio Website -:https://www.srilankancodingchamp.ml

Crypto Exchange -:https://www.unicorncrypto.ga

Facebook Page -:https://www.facebook.com/HarishaLakshanWarnakulasuriya/

Specialties-:

#Cross_Platform_System_Designing_Expert

#Software_Development_Engineer?#AI_Engineering_Associate

#Google_Cloud_DevOps_Engineer?#Mobile_Application_Engineer

#Blockchain_Development_Engineer?#NFT_Minting_Specialist?#Crypto_Stock_Trading_Platform_Designing_Engineer?#Oracle_Cloud_Infrastructure_Engineer

He also Co-operates with https://www.srilankancodingchamp.ml/ and Unicorn TukTuk Online shopping experience and U-Mark WE youth organization and UnicornVideo GAG Live broadcasting channel and website.

Published by

Harisha Lakshan Warnakulasuriya

Senior Software Engineer at Richard Pieris & Company PLC?

SUKHPAL SINGH SAINI SAINI

Senior Professor at NGF ENGG COLLEGE

9 个月

I want to set up AI and ML lab using RASPBERRY PI 4 KIT FOR ENGINEERING STUDENTS

SUKHPAL SINGH SAINI SAINI

Senior Professor at NGF ENGG COLLEGE

9 个月

Email id is [email protected]

SUKHPAL SINGH SAINI SAINI

Senior Professor at NGF ENGG COLLEGE

9 个月

Pl share the price by mail

SUKHPAL SINGH SAINI SAINI

Senior Professor at NGF ENGG COLLEGE

9 个月

Very useful info

要查看或添加评论,请登录

社区洞察

其他会员也浏览了