Face Velocities Across A Coil
Step # 1 in determining the size and performance of a coil is dependent upon understanding face velocities of air across the coil. Whether you use CCA’s coil selection program to help size the coil, or you are replacing and existing coil, the height, length and resulting velocity determine everything.
Hot Water Booster Coil
Every coil has a specific, optimum velocity, so you want to make sure you are within 30% (+ or -) of that number. For example, booster coils have an optimum velocity of 800 ft/minute. That means that you can drop your velocity to 600 ft/minute, or conversely, increase the velocity to 1,000 ft/minute. The duct velocities are almost always higher, which means that you will need to transition to a larger coil. Try to get to as close to 800 ft/minute as possible, while sizing your coil to make the transition as easy as possible. Everything with coils is a balancing act.
Hot Water & Steam Coils
Like booster coils, hot water and steam coils should also have face velocities at approximately 800 ft/minute. Both steam & hot water coils only have sensible heating, which is why their face velocities can be the same. Face velocities ultimately control the coil’s cost, so 800 ft/minute really is a heating coil’s “sweet spot”.
If you are purchasing an air handler unit, oftentimes the heating coil is smaller than the cooling coil because the face velocities on heating coils can exceed those of cooling coils. Due to water carry-over, cooling coils cannot exceed 550 ft/minute, while heating coils only deal with sensible heat.
Chilled Water & DX Coils
Due to the limited face velocities of cooling coils, your choices are more limited. With cooling coils, your face velocity must be somewhere between 500 ft/minute-550 ft/minute. Remember that when dealing with cooling coils, you are dealing with both sensible and latent cooling, so the coil is wet. When you exceed 550 ft/minute, water carry-over occurs past the drain pans.
If you are purchasing an air handler unit, you probably will not have worry about the coil’s face velocity as most coils come pre-sized at the acceptable face velocities. Fan coils also come pre-sized with the correct CFM’s. However, if you are replacing an existing cooling coil, the face velocity must remain at or below 550 ft/minute.
Air Stratification Across The Coil
Air does not travel equally across the face of a coil. If you were to divide a coil into (9) equal sections, like a tic-tac-toe board, you would see a high percentage of air traveling through the center square, rather than the corner squares. In a perfect air flow scheme, 11% of the air would travel through each of the 9 squares, but that is not what happens. Because more air travels through the center of the coil, you want to avoid putting a fan too near the coil. Due to central air flows, most systems are draw-thru, rather than blow-thru. This is also why you want to avoid installing your coil near any 90 degree angles/turns in the ductwork. Avoid any situations that contribute more than the “natural” air stratification to help ensure your coil is at maximum efficiency.
In some situation involving cooling coils, you will have water carry-over even when the coil is sized correctly. How can this happen? Think about the tic-tac-toe board again. Air velocities are exceeding 700 ft/minute in the coil’s center, while the corners are around 300 ft/minute. This cannot and will not work.
Coils do not have any moving parts. They simply react to the air across the outside of the coil and whatever is running through the inside of the coil. Coils are 100% a function of your entire system, as well as the installation in general.
Capital Coil & Air is here to help with any coil selections that will help avoid costly missteps that lead to wasted time and money. Call us on your next project, we greatly look forward to working with you!
HVAC Consultant (Retired)
7 年Actually it is the velocity of the air flow passing through the opening area...take this into consideration if you know coil maintenance is going to be poor as this passage will be compromised due to the contaminants deposits building onto fins surfaces
Chief Revenue Officer @ cfm
7 年Great article Matt!