Excel for Analytics
Swaminathan Nagarajan
Digital Consulting | Teaching | Career Counselling & Coaching
Here I focus on a few lesser-known but highly valuable Microsoft Excel functions that MBA students can utilize to enhance their data collection, analysis, calculation, simulation and financial modeling tasks.
1. XLOOKUP Function
- Arguments: XLOOKUP(lookup_value, lookup_array, return_array, [if_not_found], [match_mode], [search_mode])
- Explanation: Replaces the traditional VLOOKUP, allowing for more flexible and powerful lookups.
- Example: =XLOOKUP("Apple", A1:A5, B1:B5, "Not Found") - Searches for "Apple" in A1:A5 and returns the corresponding value from B1:B5.
2. TEXTJOIN Function
- Arguments: TEXTJOIN(delimiter, ignore_empty, text1, [text2, ...])
- Explanation: Combines multiple strings with a specified delimiter, with an option to ignore empty cells.
- Example: =TEXTJOIN(",", TRUE, A1:A3) - Joins the text in cells A1 to A3 with a comma, ignoring any empty cells.
3. FORECAST.ETS Function
- Arguments: FORECAST.ETS(target_date, values, timeline, [seasonality], [data_completion], [aggregation])
- Explanation: Forecasts future values based on historical data using the Exponential Triple Smoothing (ETS) algorithm.
- Example: =FORECAST.ETS("01/01/2023", B1:B10, A1:A10) - Forecasts the value for the date 01/01/2023 based on the historical data in A1:A10 and B1:B10.
4. AGGREGATE Function
- Arguments: AGGREGATE(function_num, options, ref1, [ref2], ...)
- Explanation: Applies various aggregate functions like SUM, AVERAGE, etc., with options to ignore hidden rows, error values, etc.
- Example: =AGGREGATE(14, 6, A1:A10) - Returns the median of the range A1:A10, ignoring hidden rows and error values.
5. SWITCH Function
- Arguments: SWITCH(expression, value1, result1, [default_or_value2, result2], ..., [default])
- Explanation: Evaluates an expression against multiple values and returns the corresponding result.
- Example: =SWITCH(A1, "Red", "Stop", "Green", "Go", "Wait") - Returns "Stop" if A1 is "Red," "Go" if A1 is "Green," and "Wait" otherwise.
6. IFS Function
- Arguments: IFS(logical_test1, value_if_true1, [logical_test2, value_if_true2], ...)
- Explanation: Evaluates multiple logical tests and returns the value corresponding to the first TRUE test.
- Example: =IFS(A1>100, "High", A1>50, "Medium", "Low") - Returns "High" if A1 is greater than 100, "Medium" if A1 is greater than 50, and "Low" otherwise.
领英推è
7. CONCAT Function
- Arguments: CONCAT(text1, [text2, ...])
- Explanation: Combines multiple strings into one without any delimiter.
- Example: =CONCAT(A1, B1, C1) - Concatenates the text in cells A1, B1, and C1.
8. UNIQUE Function
- Arguments: UNIQUE(array, [by_col], [exactly_once])
- Explanation: Returns the unique values from a range or array.
- Example: =UNIQUE(A1:A10) - Returns the unique values from the range A1:A10.
9. RANDARRAY Function
- Arguments: RANDARRAY([rows], [columns], [min], [max], [integer])
- Explanation: Generates an array of random numbers with specified dimensions, range, and type.
- Example: =RANDARRAY(5, 2, 1, 10, TRUE) - Generates a 5x2 array of random integers between 1 and 10.
10. LET Function
- Arguments: LET(name1, value1, [name2, value2, ...], calculation)
- Explanation: Assigns names to calculation results within a formula, making complex formulas more readable.
- Example: =LET(x, A1, y, B1, x*y) - Assigns A1 to x and B1 to y, then returns the product of x and y.
Use cases
To sum up:
- These functions can significantly enhance the efficiency and effectiveness of data analysis and financial modeling tasks for MBA students.
- By integrating these into their workflows, students can gain deeper insights, automate complex calculations, and develop more robust models.