Efficient quantitative phase microscopy using programmable annular LED illumination
Volodymyr Nechyporuk-Zloy
10%+ Growth Driver | Manager | Microscopist | DL Imaging
Efficient quantitative phase microscopy using programmable annular LED illumination
Jiaji Li et al.
In this work, we present an efficient quantitative phase imaging (QPI) approach using programmable annular LED illumination. As a new type of coded light source, the LED array provides flexible illumination control for noninterferometric QPI based on a traditional microscopic configurations. The proposed method modulates the transfer function of system by changing the LED illumination pattern, which provides noise-robust response of transfer function and achieves twice resolution limit of objective NA. The quantitative phase can be recovered from slightly defocused intensity images through inversion of transfer function. Moreover, the weak object transfer function (WOTF) of axis-symmetric oblique source is derived, and the noise-free and noisy simulation results validate the predicted theory. Finally, we experimentally confirm accurate and repeatable performance of our method by imaging calibrated phase samples and cellular specimens with different NA objectives.