The differences between "Term", "Match Phrase", and "Query String" queries on ElasticSearch
Florent LIU
Data architect, Full Stack Data Engineer in BIG DATA, and Full Stack Developer AI.
Elasticsearch provides different types of queries for searching text and structured data. Here’s a breakdown of the differences between "Term", "Match Phrase", and "Query String" queries:
1. Term Query
?? Use case: Exact match for structured data (keywords, IDs, numbers, etc.). ?? Behavior:
Example: Searching for a specific keyword
{
"query": {
"term": {
"status": "active"
}
}
}
? Best for:
2. Match Phrase Query
?? Use case: Search for an exact phrase in text (word order matters). ?? Behavior:
Example: Searching for an exact phrase
{
"query": {
"match_phrase": {
"description": "quick brown fox"
}
}
}
? Best for:
领英推荐
3. Query String Query
?? Use case: Allows advanced search syntax (AND, OR, wildcards, fuzzy matching). ?? Behavior:
Example: Searching with complex conditions
{
"query": {
"query_string": {
"query": "(quick OR fast) AND (fox OR dog)",
"default_field": "description"
}
}
}
? Best for:
Comparison Table
When to Use Each?
#AI #DataScience #data #generative ai #reinforcement learning optimization #model optimization techniques #fine tuning llms
KAI KnowledgeAI Big data for small & medium enterprises Generative AI Summit Dauphine Executive Education - Paris Dauphine University-PSL Université évry Paris-Saclay
Follow me on LinkedIn: www.dhirubhai.net/comm/mynetwork/discovery-see-all?usecase=PEOPLE_FOLLOWS&followMember=florentliu