Diamond-like carbon (DLC)
Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from some of those properties.
As implied by the name, diamond-like carbon (DLC), the value of such coatings accrues from their abilities to provide some of the properties of diamond to surfaces of almost any material. The primary desirable qualities are hardness, wear resistance, and slickness (DLC film friction coefficient against polished steel ranges from 0.05 to 0.20 ). DLC properties highly depends on plasma treatment deposition parameters, like effect of bias voltage, DLC coating thickness, interlayer thickness, etc. Moreover, the heat treatment also change the coating properties such as hardness, toughness and wear rate.
Application :
Applications of DLC typically utilize the ability of the material to reduce abrasive wear. Tooling components, such as endmills, drill bits, dies and molds often use DLC in this manner. DLC is also used in the engines of modern supersport motorcycles, Formula 1 racecars, NASCAR vehicles, and as a coating on hard-disk platters and hard-disk read heads to protect against head crashes. Virtually all of the multi-bladed razors used for wet shaving have the edges coated with hydrogen-free DLC to reduce friction, preventing abrasion of sensitive skin. It is also being used as a coating by some weapon manufacturers/custom gunsmiths. Some forms have been certified in the EU for food service and find extensive uses in the high-speed actions involved in processing novelty foods such as "chips" and in guiding material flows in packaging foodstuffs with plastic wraps. DLC coats the cutting edges of tools for the high-speed, dry shaping of difficult exposed surfaces of wood and aluminum, for example on automobile dashboards.
The wear, friction, and electrical properties of DLC make it an appealing material for medical applications. Fortunately, DLC has proved to have excellent bio-compatibility as well. This has enabled many medical procedures, such as Percutaneous coronary intervention employing brachytherapy to benefit from the unique electrical properties of DLC. At low voltages and low temperatures electrodes coated with DLC can emit enough electrons to be arranged into disposable, micro-X-ray tubes as small as the radioactive seeds that are introduced into arteries or tumors in conventional brachytherapy. The same dose of prescribed radiation can be applied from the inside, out with the additional possibility to switch on and off the radiation in the prescribed pattern for the X-rays being used. DLC has proved to be an excellent coating to prolong the life of and reduce complications with replacement hip joints and artificial knees. It also has been successfully applied to coronary artery stents, reducing the incidence of thrombosis. The implantable human heart pump can be considered the ultimate biomedical application where DLC coating is used on blood contacting surfaces of the key components of the device.
The Space Black stainless steel Apple Watch is coated with diamond-like carbon.
--This article is quoted from"Wikipedia",for personal learning purposes only, please contact " [email protected]" to delete if it is infringing act involved.